Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites

被引:117
作者
Cai, Yibing [1 ]
Wei, Qufu [1 ]
Huang, Fenglin [1 ]
Gao, Weidong [1 ]
机构
[1] Jiangnan Univ, Minist Educ, Key Lab Eco Text, Jiangsu 214122, Peoples R China
关键词
form-stable phase change materials (PCM); expandable graphite (EG); halogen-free flame retardant; thermal stability; latent heat; synergistic effect;
D O I
10.1016/j.apenergy.2007.10.017
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The halogen-free flame retardant form-stable phase change materials (PCM) based on paraffin/high density polyethylene (HDPE) composites were prepared by using twin-screw extruder technique. The structures and properties of the form-stable PCM composites based on intumescent flame retardant system with expandable graphite (EG) and different synergistic additives, such as ammonium polyphosphate (APP) and zinc borate (ZB) were characterized by scanning electronic microscope (SEM), thermogravimetric analyses (TGA), dynamic Fourier-transform infrared (FTIR) spectra, differential scanning calorimeter (DSC) and Cone calorimeter test. The TGA results showed that the halogen-free flame retardant form-stable PCM composites produced a larger amount of charred residue at 700 degrees C, although the onset of weight loss of the halogen-free flame retardant form-stable PCM composites occurred at a lower temperature due to the thermal decomposition of flame retardant. The DSC measurements indicated that the additives of flame retardant had little effect on the thermal energy storage property, and the temperatures of phase change peaks and the latent heat of the paraffin showed better occurrence during the freezing process. The dynamic FTIR monitoring results revealed that the breakdowns of main chains (HDPE and paraffin) and formations of various residues increased with increasing thermo-oxidation temperature. It was also found from the Cone calorimeter tests that the peak of heat release rate (PHRR) decreased significantly. Both the decrease of the PHRR and the structure of charred residue after combustion indicated that there was a synergistic effect between the EG and APP, contributing to the improved flammability of the halogen-free flame retardant form-stable PCM composites. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:765 / 775
页数:11
相关论文
共 19 条
[1]   Flammability and thermal properties of high density polyethylene/paraffin hybrid as a form-stable phase change material [J].
Cai, YB ;
Hu, Y ;
Song, L ;
Tang, Y ;
Yang, R ;
Zhang, YP ;
Chen, ZY ;
Fan, WC .
JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 99 (04) :1320-1327
[2]   A novel montmorillonite-based composite phase change material and its applications in thermal storage building materials [J].
Fang, XM ;
Zhang, ZG .
ENERGY AND BUILDINGS, 2006, 38 (04) :377-380
[3]   Flammability properties of polymer - Layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites [J].
Gilman, JW ;
Jackson, CL ;
Morgan, AB ;
Harris, R ;
Manias, E ;
Giannelis, EP ;
Wuthenow, M ;
Hilton, D ;
Phillips, SH .
CHEMISTRY OF MATERIALS, 2000, 12 (07) :1866-1873
[4]   Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites [J].
Gilman, JW .
APPLIED CLAY SCIENCE, 1999, 15 (1-2) :31-49
[5]   Review on sustainable thermal energy storage technologies, part I: Heat storage materials and techniques [J].
Hasnain, SM .
ENERGY CONVERSION AND MANAGEMENT, 1998, 39 (11) :1127-1138
[6]   Preparation of polyethylene-paraffin compound as a form-stable solid-liquid phase change material [J].
Hong, Y ;
Ge, XS .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 64 (01) :37-44
[7]  
LEBRAS M, 1998, RETARDANCY POLYM USE
[8]   Crystalline morphology in high-density polyethylene/paraffin blend for thermal energy storage [J].
Lee, CH ;
Choi, HK .
POLYMER COMPOSITES, 1998, 19 (06) :704-708
[9]   Preparation and thermal properties of form stable paraffin phase change material encapsulation [J].
Liu Xing ;
Liu Hongyan ;
Wang ShuJun ;
Zhang Lu ;
Cheng Hua .
ENERGY CONVERSION AND MANAGEMENT, 2006, 47 (15-16) :2515-2522
[10]   Polymeric phase change composites for thermal energy storage [J].
Peng, S ;
Fuchs, A ;
Wirtz, RA .
JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 93 (03) :1240-1251