Perfect simulation of conditionally specified models

被引:51
作者
Moller, J [1 ]
机构
[1] Aalborg Univ, Dept Math, DK-9220 Aalborg 0, Denmark
关键词
coupling from the past; exact simulation; Gibbs sampling; locally specified exponential family distributions; Markov chain Monte Carlo methods; Metropolis-Hastings algorithm; spatial statistics;
D O I
10.1111/1467-9868.00175
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss how the ideas of producing perfect simulations based on coupling from the past for finite state space models naturally extend to multivariate distributions with infinite or uncountable state spaces such as autogamma, auto-Poisson and autonegative binomial models, using Gibbs sampling in combination with sandwiching methods originally introduced for perfect simulation of point processes.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 20 条
[1]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[2]  
Cressie N., 1993, STAT SPATIAL DATA
[3]  
Fill JA, 1998, ANN APPL PROBAB, V8, P131
[4]  
FOSS SG, 1998, IN PRESS STOCHAST MO
[5]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[6]  
GREEN PJ, 1996, MARKOV CHAIN MONTE C, P381
[7]  
HAGGSTROM O, 1996, IN PRESS BERNOULLI
[8]  
HAGGSTROM O, 1997, IN PRESS STAT NEERLA
[9]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[10]  
Kendall W., 1998, PROBABILITY 2000, P218, DOI DOI 10.1007/978-1-4612-2224-8_13