Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber

被引:90
作者
Tritscher, T. [1 ]
Dommen, J. [1 ]
DeCarlo, P. F. [1 ]
Gysel, M. [1 ]
Barmet, P. B. [1 ]
Praplan, A. P. [1 ]
Weingartner, E. [1 ]
Prevot, A. S. H. [1 ]
Riipinen, I. [2 ,3 ]
Donahue, N. M. [3 ]
Baltensperger, U. [1 ]
机构
[1] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland
[2] Univ Helsinki, Dept Phys, Helsinki, Finland
[3] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
DIFFERENTIAL MOBILITY ANALYZER; MASS-SPECTROMETRY; HIGH-RESOLUTION; EVAPORATION KINETICS; BIOGENIC PRECURSORS; ABSORPTION-MODEL; PARTICLES; THERMODENUDER; SEMIVOLATILE; OXIDATION;
D O I
10.5194/acp-11-11477-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The evolution of secondary organic aerosols (SOA) during (photo-)chemical aging processes was investigated in a smog chamber. Fresh SOA from ozonolysis of 10 to 40 ppb alpha-pinene was formed followed by aging with OH radicals. The particles' volatility and hygroscopicity (expressed as volume fraction remaining (VFR) and hygroscopicity parameter kappa) were measured in parallel with a volatility and hygroscopicity tandem differential mobility analyzer (V/H-TDMA). An aerosol mass spectrometer (AMS) was used for the chemical characterization of the aerosol. These measurements were used as sensitive parameters to reveal the mechanisms possibly responsible for the changes in the SOA composition during aging. A change of VFR and/or kappa during processing of atmospheric aerosols may occur either by addition of SOA mass (by condensation) or by a change of SOA composition leading to different aerosol properties. The latter may occur either by heterogeneous reactions on the surface of the SOA particles, by condensed phase reactions like oligomerization or by an evaporation - gas-phase oxidation - recondensation cycle. The condensation mechanism showed to be dominant when there is a substantial change in the aerosol mass by addition of new molecules to the aerosol phase with time. Experiments could be divided into four periods based on the temporal evolution (qualitative changes) of VFR, kappa and organic mass: O-3 induced condensation, ripening, and OH induced chemical aging first with substantial mass gain and then without significant mass gain.
引用
收藏
页码:11477 / 11496
页数:20
相关论文
共 55 条
[1]   O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry [J].
Aiken, Allison C. ;
Decarlo, Peter F. ;
Kroll, Jesse H. ;
Worsnop, Douglas R. ;
Huffman, J. Alex ;
Docherty, Kenneth S. ;
Ulbrich, Ingrid M. ;
Mohr, Claudia ;
Kimmel, Joel R. ;
Sueper, Donna ;
Sun, Yele ;
Zhang, Qi ;
Trimborn, Achim ;
Northway, Megan ;
Ziemann, Paul J. ;
Canagaratna, Manjula R. ;
Onasch, Timothy B. ;
Alfarra, M. Rami ;
Prevot, Andre S. H. ;
Dommen, Josef ;
Duplissy, Jonathan ;
Metzger, Axel ;
Baltensperger, Urs ;
Jimenez, Jose L. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4478-4485
[2]   Elemental analysis of organic species with electron ionization high-resolution mass spectrometry [J].
Aiken, Allison. C. ;
DeCarlo, Peter F. ;
Jimenez, Jose L. .
ANALYTICAL CHEMISTRY, 2007, 79 (21) :8350-8358
[3]   A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber [J].
Alfarra, M. R. ;
Paulsen, D. ;
Gysel, M. ;
Garforth, A. A. ;
Dommen, J. ;
Prevot, A. S. H. ;
Worsnop, D. R. ;
Baltensperger, U. ;
Coe, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :5279-5293
[4]   Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol [J].
An, Woo Jin ;
Pathak, Ravi K. ;
Lee, Byong-Hyoek ;
Pandis, Spyros N. .
JOURNAL OF AEROSOL SCIENCE, 2007, 38 (03) :305-314
[5]   Secondary organic aerosols from anthropogenic and biogenic precursors [J].
Baltensperger, U ;
Kalberer, M ;
Dommen, J ;
Paulsen, D ;
Alfarra, MR ;
Coe, H ;
Fisseha, R ;
Gascho, A ;
Gysel, M ;
Nyeki, S ;
Sax, M ;
Steinbacher, M ;
Prevot, ASH ;
Sjögren, S ;
Weingartner, E ;
Zenobi, R .
FARADAY DISCUSSIONS, 2005, 130 :265-278
[6]  
BARMET P, 2011, ATMOS MEAS TEC UNPUB
[7]   Separation of volatile and non-volatile aerosol fractions by thermodesorption:: instrumental development and applications [J].
Burtscher, H ;
Baltensperger, U ;
Bukowiecki, N ;
Cohn, P ;
Hüglin, C ;
Mohr, M ;
Matter, U ;
Nyeki, S ;
Schmatloch, V ;
Streit, N ;
Weingartner, E .
JOURNAL OF AEROSOL SCIENCE, 2001, 32 (04) :427-442
[8]   Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior [J].
Cappa, C. D. ;
Wilson, K. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (05) :1895-1911
[9]   The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation [J].
Chang, R. Y-W. ;
Slowik, J. G. ;
Shantz, N. C. ;
Vlasenko, A. ;
Liggio, J. ;
Sjostedt, S. J. ;
Leaitch, W. R. ;
Abbatt, J. P. D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (11) :5047-5064
[10]   Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer [J].
DeCarlo, Peter F. ;
Kimmel, Joel R. ;
Trimborn, Achim ;
Northway, Megan J. ;
Jayne, John T. ;
Aiken, Allison C. ;
Gonin, Marc ;
Fuhrer, Katrin ;
Horvath, Thomas ;
Docherty, Kenneth S. ;
Worsnop, Doug R. ;
Jimenez, Jose L. .
ANALYTICAL CHEMISTRY, 2006, 78 (24) :8281-8289