Geometric asymptotics and the logarithmic Sobolev inequality

被引:53
作者
Beckner, W [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.1515/form.11.1.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The logarithmic Sobolev inequality is developed as a geometric asymptotic estimate with respect to Lebesgue measure. Two short geometric arguments are given to derive (1) the logarithmic Sobolev inequality from the isoperimetric inequality and (2) Nash's inequality with an asymptotically sharp constant from the logarithmic Sobolev inequality. In addition, the Fisher information form of the logarithmic Sobolev inequality is obtained directly from the isoperimetric inequality. A new formulation of the logarithmic Sobolev inequality is given for hyperbolic space which can be interpreted as an "uncertainty principle" in this setting. 1991 Mathematics Subject Classification: 58G35, 42B10, 46E35.
引用
收藏
页码:105 / 137
页数:33
相关论文
共 51 条
[1]  
[Anonymous], PROBABILITY THEORY
[2]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[3]  
Aubin Thierry, 1982, GRUNDLEHREN MATH WIS, V252
[4]   Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator [J].
Bakry, D ;
Ledoux, M .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :259-281
[5]   On sharp Sobolev embedding and the logarithmic Sobolev inequality [J].
Beckner, W ;
Pearson, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :80-84
[6]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[8]  
Beckner W, 1998, INT MATH RES NOTICES, V1998, P67
[9]   Logarithmic Sobolev inequalities and the existence of singular integrals [J].
Beckner, W .
FORUM MATHEMATICUM, 1997, 9 (03) :303-323
[10]   PITTS INEQUALITY AND THE UNCERTAINTY PRINCIPLE [J].
BECKNER, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1897-1905