Forecasting chaotic time series with genetic algorithms

被引:96
作者
Szpiro, GG
机构
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 03期
关键词
D O I
10.1103/PhysRevE.55.2557
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper proposes the use of genetic algorithms-search procedures, modeled on the Darwinian theories of natural selection and survival of the fittest-to find equations that describe the behavior of a time series. The method permits global forecasts of such series. Very little data are sufficient to utilize the method and, as a byproduct, these algorithms sometimes indicate the functional form of the dynamic that underlies the data. The algorithms are tested with clean as well as with noisy chaotic data, and with the sunspot series.
引用
收藏
页码:2557 / 2568
页数:12
相关论文
共 36 条
[1]   USING NEURAL NETS TO LOOK FOR CHAOS [J].
ALBANO, AM ;
PASSAMANTE, A ;
HEDIGER, T ;
FARRELL, ME .
PHYSICA D, 1992, 58 (1-4) :1-9
[2]  
[Anonymous], NONLINEAR MODELING F
[3]  
[Anonymous], NEURAL NETWORKS TIME
[4]  
BAUER J, 1994, GENETIC ALGORITHMS I
[5]   CHARACTERIZATION OF EXPERIMENTAL (NOISY) STRANGE ATTRACTORS [J].
BENMIZRACHI, A ;
PROCACCIA, I ;
GRASSBERGER, P .
PHYSICAL REVIEW A, 1984, 29 (02) :975-977
[6]   APPLICATION OF GENETIC ALGORITHMS IN MOLECULAR MODELING [J].
BRODMEIER, T ;
PRETSCH, E .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (06) :588-595
[7]   Predicting chaotic time series with wavelet networks [J].
1600, Elsevier Science B.V., Amsterdam, Netherlands (85) :1-2
[8]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[9]  
DOERNER R, 1994, PHYS REV E, V50, P12
[10]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848