On the formulation and theory of the Newton interior-point method for nonlinear programming

被引:270
作者
ElBakry, AS
Tapia, RA
Tsuchiya, T
Zhang, Y
机构
[1] RICE UNIV, CTR RES PARALLEL COMPUTAT, HOUSTON, TX 77251 USA
[2] RICE UNIV, DEPT COMPUTAT & APPL MATH, HOUSTON, TX 77251 USA
[3] INST STAT MATH, DEPT PREDICT & CONTROL, MINATO KU, TOKYO 106, JAPAN
[4] UNIV MARYLAND, DEPT MATH & STAT, BALTIMORE, MD 21201 USA
关键词
interior-point methods; primal-dual methods; nonlinear programming; superlinear and quadratic convergence; global convergence;
D O I
10.1007/BF02275347
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we first study in detail the formulation of the primal-dual interior-point method for linear programming. We show that, contrary to popular belief, it cannot be viewed as a damped Newton method applied to the Karush-Kuhn-Tucker conditions for the logarithmic barrier function problem. Next, we extend the formulation to general nonlinear programming, and then validate this extension by demonstrating that this algorithm can be implemented so that it is locally and Q-quadratically convergent under only the standard Newton method assumptions. We also establish a global convergence theory for this algorithm and include promising numerical experimentation.
引用
收藏
页码:507 / 541
页数:35
相关论文
共 24 条
[1]  
ANSTREICHER KM, IN PRESS OPTIMIZATIO
[2]   A TOOL FOR THE ANALYSIS OF QUASI-NEWTON METHODS WITH APPLICATION TO UNCONSTRAINED MINIMIZATION [J].
BYRD, RH ;
NOCEDAL, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (03) :727-739
[3]  
Dennis, 1996, NUMERICAL METHODS UN
[4]   A STUDY OF INDICATORS FOR IDENTIFYING ZERO VARIABLES IN INTERIOR-POINT METHODS [J].
ELBAKRY, AS ;
TAPIA, RA ;
ZHANG, Y .
SIAM REVIEW, 1994, 36 (01) :45-72
[5]  
Fiacco A.V., 1990, Nonlinear Programming Sequential Unconstrained Minimization Techniques
[6]  
Hestenes M. R., 1969, Journal of Optimization Theory and Applications, V4, P303, DOI 10.1007/BF00927673
[7]  
Hock W., 1981, TEST EXAMPLES NONLIN
[8]  
KOJIMA M, 1989, PROGR MATH PROGRAMMI
[9]  
LASDON L, 1992, SIAM C OPT CHIC ILL
[10]   ON IMPLEMENTING MEHROTRA'S PREDICTOR-CORRECTOR INTERIOR-POINT METHOD FOR LINEAR PROGRAMMING [J].
Lustig, Irvin J. ;
Marsten, Roy E. ;
Shanno, David F. .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (03) :435-449