We investigated the physiology and function of P2Y receptors expressed in human dendritic cells (DCs) differentiated in vitro from CD14(+) cells (DC-14). These were obtained after a 10 day stimulation period in GM-CSF, IL-4 and monocyte conditioned medium. DC-14 were found to express high amounts of MHC class II, B7, CD40 as well as CD83. The functional analysis, using single cell Ca2+ imaging, demonstrated the expression of at least three subtypes of P2Y receptors. We further found using patch-clamp measurements that ATP evoked a pertussis toxin insensitive non-selective cation current with a peak current amplitude of -276 +/- 43 pA (holding potential -80 mV, n = 23). This current was not Ca2+-activated, since it was still observed under conditions of high intracellular Ca2+ buffering and could be blocked by Gd3+ (0.5 mM). In addition, intracellular application of GTP-gamma-S (0.3 mM) also activated the current. Interestingly, DC-14 redirected the orientation of their dendrites as well as cell shape towards a pipette containing ATP as observed with time lapse microscopy. These data suggest that in human DCs, ATP acts via P2Y receptors and induces chemokine effects. (C) 1999 Federation of European Biochemical Societies.