Influence of nitrogen dopants on N-doped TiO2 electrodes and their applications in dye-sensitized solar cells

被引:90
作者
Guo, Wei [1 ]
Shen, Yihua [1 ]
Boschloo, Gerrit [2 ]
Hagfeldt, Anders [2 ]
Ma, Tingli [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Sch Chem Engn, Dalian 116024, Peoples R China
[2] Uppsala Univ, Dept Phys & Analyt Chem, S-75105 Uppsala, Sweden
基金
中国国家自然科学基金;
关键词
Nitrogen-doped titania; Dye-sensitized solar cell; Nitrogen dopant; Wet method; Electron transport; VISIBLE-LIGHT ABSORPTION; TITANIUM-DIOXIDE; ZINC STANNATE; EFFICIENCY; TRANSPORT; ORIGIN; PHOTOCATALYSTS; RECOMBINATION; SIZE;
D O I
10.1016/j.electacta.2011.02.091
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Three different types of nanocrystalline, N-doped TiO2 electrodes were synthesized using several nitrogen dopants through wet methods. The obtained nanocrystalline, N-doped TiO2 electrodes possessed different crystallite sizes, surface areas, and N-doping amounts. Characterizations were performed to reveal the nitrogen-doping processes for the wet methods using ammonia, urea, and triethylamine as the nitrogen dopants. Additionally, a high conversion efficiency of 8.32% was achieved by the dye-sensitized solar cells, based on the N-doped TiO2 electrodes. For instance, in comparison with the commercial P25 (5.76%) and pure anatase TiO2 electrodes (7.14%), significant improvements (44% and 17%, respectively) in the efficiencies were obtained. The findings also indicated that the ammonia nitrogen dopant was more efficient than other two nitrogen dopants. The electron transports, electron lifetimes, and charge recombination in the dye-sensitized N-doped TiO2 solar cells also differed from those in the pure TiO2-based dye-sensitized solar cells (DSCs). Specifically, an enhanced photocurrent of ca. 36% in N-doped DSCs resulted from the synergistic effects of the high dye uptake and the efficient electron transport. Moreover, the relationship between charge and voltage revealed that less charge was needed to get a high open-circuit voltage in the N-doping films. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4611 / 4617
页数:7
相关论文
共 41 条
[1]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[2]   Electronic and optical properties of anatase TiO2 [J].
Asahi, R ;
Taga, Y ;
Mannstadt, W ;
Freeman, AJ .
PHYSICAL REVIEW B, 2000, 61 (11) :7459-7465
[3]   Activation energy of electron transport in dye-sensitized TiO2 solar cells [J].
Boschloo, G ;
Hagfeldt, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (24) :12093-12098
[4]   Enhanced nitrogen doping in TiO2 nanoparticles [J].
Burda, C ;
Lou, YB ;
Chen, XB ;
Samia, ACS ;
Stout, J ;
Gole, JL .
NANO LETTERS, 2003, 3 (08) :1049-1051
[5]   Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells [J].
Cass, MJ ;
Qiu, FL ;
Walker, AB ;
Fisher, AC ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (01) :113-119
[6]   Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder [J].
Chen, XB ;
Lou, YB ;
Samia, ACS ;
Burda, C ;
Gole, JL .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (01) :41-49
[7]   The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials [J].
Chen, Xiaobo ;
Burda, Clemens .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (15) :5018-+
[8]   Mechanism of Particle Size Effect on Electron Injection Efficiency in Ruthenium Dye-Sensitized TiO2 Nanoparticle Films [J].
Du, Luchao ;
Furube, Akihiro ;
Hara, Kohjiro ;
Katoh, Ryuzi ;
Tachiya, M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (18) :8135-8143
[9]   A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells [J].
Duffy, NW ;
Peter, LM ;
Rajapakse, RMG ;
Wijayantha, KGU .
ELECTROCHEMISTRY COMMUNICATIONS, 2000, 2 (09) :658-662
[10]   Highly Visible Light Active TiO2-xNx Heterojunction Photocatalysts [J].
Etacheri, Vinodkumar ;
Seery, Michael K. ;
Hinder, Steven J. ;
Pillai, Suresh C. .
CHEMISTRY OF MATERIALS, 2010, 22 (13) :3843-3853