Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils

被引:163
作者
Rumpel, C
Eusterhues, K
Kögel-Knabner, I
机构
[1] INRA, CNRS, Lab Biogeochim Milieux Continentaux, Ctr Versailles Grignon, F-78820 Thiverval Grignon, France
[2] Tech Univ Munich, Lehrstuhl Bodenkunde, Dept Okol, Wissensch Zentrum Weihenstephan Ernahrung Landnut, D-85350 Freising Weihenstephan, Germany
关键词
carbon stabilization; C-14; activity; nuclear magnetic resonance spectroscopy; subsoil;
D O I
10.1016/j.soilbio.2003.09.005
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The C-14 age of soil organic matter is known to increase with soil depth. Therefore, the aim of this study was to examine the stabilization of carbon compounds in the entire soil profile using particle size fractionation to distinguish SOM pools with different turnover rates. Samples were taken from a Dystric Cambisol and a Haplic Podzol under forest, which are representative soil types under humid climate conditions. The conceptual approach included the analyses of particle size fractions of all mineral soil horizons for elemental composition and chemical structure of the organic matter by C-13 cross-polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy. The contribution of phenols and hydroxyalkanoic acids, which represent recalcitrant plant litter compounds, was analyzed after CuO oxidation. In the Dystric Cambisol, the highest carbon concentration as well as the highest percentage of total organic carbon are found in the < 6.3 mum fractions of the B and C horizons. In the Haplic Podzol, carbon distribution among the particle size fractions of the Bh and Bvs horizons is influenced by the adsorption of dissolved organic matter. A relationship between the carbon enrichment in fractions < 6.3 mum and the C-14 activity of the bulk soil indicates that stabilization of SOM occurs in fine particle size fractions of both soils. C-13 CPMAS NMR spectroscopy shows that a high concentration of alkyl carbon is present in the fine particle size fractions of the B horizons of the Dystric Cambisol. Decreasing contribution of O-alkyl and aromatic carbon with particle size as well as soil depth indicates that these compounds are not stabilized in the Dystric Cambisol. These results are in accordance with data obtained by wet chemical analyses showing that cutin/suberin-derived hydroxyalkanoic acids are preserved in the fine particle size fractions of the B horizons. The organic matter composition in particle size fractions of the top- and subsoil horizons of the Haplic Podzol shows that this soil is acting like a chromatographic system preserving insoluble alkyl carbon in the fine particle size fractions of the A horizon. Small molecules, most probably organic acids, dominate in the fine particle size fractions of the C horizons, where they are stabilized in clay-sized fractions most likely due to the interaction with the mineral phase. The characterization of lignin-derived phenols indicated, in accordance with the NMR measurements, that these compounds are not stabilized in the mineral soil horizons. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:177 / 190
页数:14
相关论文
共 51 条
[1]   Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons [J].
Amelung, W ;
Zech, W .
GEODERMA, 1999, 92 (1-2) :73-85
[2]   ATTEMPTS TO IMPROVE SOLID-STATE C-13 NMR-SPECTRA OF WHOLE MINERAL SOILS [J].
ARSHAD, MA ;
RIPMEESTER, JA ;
SCHNITZER, M .
CANADIAN JOURNAL OF SOIL SCIENCE, 1988, 68 (03) :593-602
[3]   Role of the soil matrix and minerals in protecting natural organic materials against biological attack [J].
Baldock, JA ;
Skjemstad, JO .
ORGANIC GEOCHEMISTRY, 2000, 31 (7-8) :697-710
[4]   Assessing the extent of decomposition of natural organic materials using solid-state C-13 NMR spectroscopy [J].
Baldock, JA ;
Oades, JM ;
Nelson, PN ;
Skene, TM ;
Golchin, A ;
Clarke, P .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 1997, 35 (05) :1061-1083
[5]   SOLID-STATE CP/MAS C-13 NMR ANALYSIS OF BACTERIAL AND FUNGAL CULTURES ISOLATED FROM A SOIL INCUBATED WITH GLUCOSE [J].
BALDOCK, JA ;
OADES, JM ;
VASSALLO, AM ;
WILSON, MA .
AUSTRALIAN JOURNAL OF SOIL RESEARCH, 1990, 28 (02) :213-225
[6]  
BALDOCK JA, 1992, BIOGEOCHEMISTRY, V16, P1, DOI 10.1007/BF02402261
[7]   The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence [J].
Balesdent, J ;
Besnard, E ;
Arrouays, D ;
Chenu, C .
PLANT AND SOIL, 1998, 201 (01) :49-57
[8]  
Bernards MA, 2002, CAN J BOT, V80, P227, DOI [10.1139/b02-017, 10.1139/B02-017]
[9]  
Christensen B.T., 1992, Advances in Soil Science, V20, P1, DOI DOI 10.1007/978-1-4612-2930-8_1
[10]   Physical fractionation of soil and structural and functional complexity in organic matter turnover [J].
Christensen, BT .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2001, 52 (03) :345-353