Consequences of forward translation of the point of force application for the mechanics of running

被引:34
作者
Bullimore, SR [1 ]
Burn, JF [1 ]
机构
[1] Univ Bristol, Dept Anat, Bristol BS2 8EJ, Avon, England
关键词
centre of pressure; gait; locomotion; spring-mass model; foot strike;
D O I
10.1016/j.jtbi.2005.05.011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In running humans, the point of force application between the foot and the ground moves forwards during the stance phase. Our aim was to determine the mechanical consequences of this 'point of force translation' (POFT). We modified the planar spring-mass model of locomotion to incorporate POFT, and then compared spring-mass simulations with and without POFT. We found that, if leg stiffness is adjusted appropriately, it is possible to maintain very similar values of peak vertical ground reaction force (GRF), stance time, contact length and vertical centre of mass displacement, whether or not POFT occurs. The leg stiffness required to achieve this increased as the distance of POFT increased. Peak horizontal GRF and mechanical work per step were lower when POFT occurred. The results indicate that the lack of POFT in the traditional spring-mass model should not prevent it from providing good predictions of peak vertical GRF, stance time, contact length and vertical centre of mass displacement in running humans, if an appropriate spring stiffness is used. However, the model can be expected to overestimate peak horizontal GRF and mechanical work per step. When POFT occurs, the spring stiffness in the traditional spring-mass model is not equivalent to leg stiffness. Therefore, caution should be exercised when using spring stiffness to understand how the musculoskeletal system adapts to different running conditions. This can explain the contradictory results in the literature regarding the effect of running speed on leg stiffness. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:211 / 219
页数:9
相关论文
共 19 条
[1]   The effect of speed on leg stiffness and joint kinetics in human running [J].
Arampatzis, A ;
Brüggemann, GP ;
Metzler, V .
JOURNAL OF BIOMECHANICS, 1999, 32 (12) :1349-1353
[2]   METABOLIC AND MECHANICAL ASPECTS OF FOOT LANDING TYPE, FOREFOOT AND REARFOOT STRIKE, IN HUMAN RUNNING [J].
ARDIGO, LP ;
LAFORTUNA, C ;
MINETTI, AE ;
MOGNONI, P ;
SAIBENE, F .
ACTA PHYSIOLOGICA SCANDINAVICA, 1995, 155 (01) :17-22
[3]   Muscle mechanical advantage of human walking and running: implications for energy cost [J].
Biewener, AA ;
Farley, CT ;
Roberts, TJ ;
Temaner, M .
JOURNAL OF APPLIED PHYSIOLOGY, 2004, 97 (06) :2266-2274
[4]   THE SPRING MASS MODEL FOR RUNNING AND HOPPING [J].
BLICKHAN, R .
JOURNAL OF BIOMECHANICS, 1989, 22 (11-12) :1217-1227
[5]   GROUND REACTION FORCES IN DISTANCE RUNNING [J].
CAVANAGH, PR ;
LAFORTUNE, MA .
JOURNAL OF BIOMECHANICS, 1980, 13 (05) :397-406
[6]  
Donelan JM, 2000, J EXP BIOL, V203, P2405
[7]   Leg stiffness and stride frequency in human running [J].
Farley, CT ;
Gonzalez, O .
JOURNAL OF BIOMECHANICS, 1996, 29 (02) :181-186
[8]   Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses [J].
Farley, CT ;
Houdijk, HHP ;
Van Strien, C ;
Louie, M .
JOURNAL OF APPLIED PHYSIOLOGY, 1998, 85 (03) :1044-1055
[9]   HOPPING FREQUENCY IN HUMANS - A TEST OF HOW SPRINGS SET STRIDE FREQUENCY IN BOUNCING GAITS [J].
FARLEY, CT ;
BLICKHAN, R ;
SAITO, J ;
TAYLOR, CR .
JOURNAL OF APPLIED PHYSIOLOGY, 1991, 71 (06) :2127-2132
[10]   Running in the real world: adjusting leg stiffness for different surfaces [J].
Ferris, DP ;
Louie, M ;
Farley, CT .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1998, 265 (1400) :989-994