Throughout life organisms are challenged with various physiological and psychological stressors, and the ability to handle these stressors can have profound effects on the overall health of the organism. In mammals, the effects of stressors on the aging process and age-related diseases are complex, involving the nervous, endocrine and immune systems. Certain types of mild stress, such as caloric restriction, may extend lifespan and reduce the risk of diseases, whereas some types of psychosocial stress are clearly detrimental. We now have a basic understanding of the brain regions involved in stress responses, their neuroanatomical connections with neuroendocrine pathways, and the neuropeptides and hor mones involved in controlling responses of different organ systems to stress. Not surprisingly, brain regions involved in learning and memory and emotion play prominent roles in stress responses, and monoaminergic and glutamatergic synapses play particularly important roles in transducing stressful sensory inputs into neuroendocrine responses. Among the neuropeptides involved in stress responses. corticotropin-releasing hormone appears to be a pivotal regulator of fear and anxiety responses. This neuropeptide is responsible for activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is critical for mobilizing energy reserves and immune responses, and improper regulation of the HPA axis mediates many of the adverse effects of chronic physical and psychosocial stress.