The initial stages of aggregation of a series of organogelator salts, prepared from n-alkylamines by the rapid in situ and isothermal (at room temperature) uptake of the neutral triatomic molecule, CO2, have been probed by NMR spectroscopy in the nongelled liquid, chloroform-d. Evidence for specific interactions of the ionic headgroups in the aggregates is presented. The influences of concentration and temperature on the processes leading to pre-sol aggregates of decylammonium decylcarbamate (2b) have been investigated in detail. NMR spectra of selectively deuterated (at the alpha-methylene group) and selectively C-13-enriched (at the carbonyl carbon) 2b demonstrate that CO2 is scrambled rapidly between the ammonium and carbamate parts of the molecule in chloroform solution. No scrambling of CS2 was detected in alkylammonium alkyldithiocarbamates under the same experimental conditions.