Novel redox-dependent regulation of NOX5 by the tyrosine kinase c-Abl

被引:79
作者
El Jamali, Amina [1 ,2 ]
Valente, Anthony J. [1 ,2 ]
Lechleiter, James D. [2 ,3 ]
Gamez, Maria J. [1 ,2 ]
Pearson, Doran W. [1 ,2 ]
Nauseef, William M. [4 ,5 ]
Clark, Robert A. [1 ,2 ]
机构
[1] Univ Texas Hlth Sci Ctr San Antonio, Dept Med, San Antonio, TX 78229 USA
[2] S Texas Vet Hlth Care Syst, Audie L Murphy Div, San Antonio, TX 78229 USA
[3] Univ Texas Hlth Sci Ctr San Antonio, Dept Cellular & Struct Biol, San Antonio, TX 78229 USA
[4] Univ Iowa, Dept Med, Inflammat Program, Iowa City, IA 52241 USA
[5] Vet Adm Med Ctr, Iowa City, IA 52241 USA
关键词
NADPH oxidase; NOX5; hydrogen peroxide; signaling; c-Abl; superoxide; calcium; free radicals;
D O I
10.1016/j.freeradbiomed.2007.11.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We investigated the mechanism of H2O2 activation of the Ca2+-regulated NADPH oxidase NOX5. H2O2 induced a transient, dose-dependent increase in superoxide production in K562 cells expressing NOX5. Confocal studies demonstrated that the initial calcium influx generated by H2O2 is amplified by a feedback mechanism involving NOX5-dependent superoxide production and H2O2. H2O2 NOX5 activation was inhibited by extracellular Ca2+ chelators, a pharmacological inhibitor of c-Abl, and overexpression of kinase-dead c-Abl. Transfected kinase-active GFP-c-Abl colocalized with vesicular sites of superoxide production in a Ca2+-dependent manner. In contrast to H2O2, the Ca2+ ionophore ionomycin induced NOX5 activity independent of c-Abl. Immunoprecipitation of cell lysates revealed that active GFP-c-Abl formed oligomers with endogenous c-Abl and that phosphorylation of both proteins was increased by H2O2 treatment. Furthermore, H2O2-induced NOX5 activity correlated with increased localization of c-Abl to the membrane fraction, and NOX5 proteins could be coimmunoprecipitated with GFP-Abl proteins. Our data demonstrate for the first time that NOX5 is activated by c-Abl through a Ca2+-mediated, redox-dependent signaling pathway and suggest a functional association between NOX5 NADPH oxidase and c-Abl. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:868 / 881
页数:14
相关论文
共 47 条
[1]   Epidermal growth factor (EGF)-induced generation of hydrogen peroxide - Role in EGF receptor-mediated tyrosine phosphorylation [J].
Bae, YS ;
Kang, SW ;
Seo, MS ;
Baines, IC ;
Tekle, E ;
Chock, PB ;
Rhee, SG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (01) :217-221
[2]   Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5) [J].
Bánfi, B ;
Tirone, F ;
Durussel, I ;
Knisz, J ;
Moskwa, P ;
Molnár, GZ ;
Krause, KH ;
Cox, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (18) :18583-18591
[3]   A Ca2+-activated NADPH oxidase in testis, spleen, and lymph nodes [J].
Bánfi, B ;
Molnár, G ;
Maturana, A ;
Steger, K ;
Hegedûs, B ;
Demaurex, N ;
Krause, KH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (40) :37594-37601
[4]   The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology [J].
Bedard, Karen ;
Krause, Karl-Heinz .
PHYSIOLOGICAL REVIEWS, 2007, 87 (01) :245-313
[5]   NOX5 variants are functionally active in endothelial cells [J].
BelAiba, Rachida S. ;
Djordjevic, Talija ;
Petry, Andreas ;
Diemer, Kerstin ;
Bonello, Steve ;
Banfi, Botond ;
Hess, John ;
Pogrebniak, Alexej ;
Bickel, Christian ;
Goerlach, Agnes .
FREE RADICAL BIOLOGY AND MEDICINE, 2007, 42 (04) :446-459
[6]   INTRACELLULAR DIFFUSION, BINDING, AND COMPARTMENTALIZATION OF THE FLUORESCENT CALCIUM INDICATORS INDO-1 AND FURA-2 [J].
BLATTER, LA ;
WIER, WG .
BIOPHYSICAL JOURNAL, 1990, 58 (06) :1491-1499
[7]   SUBCELLULAR-LOCALIZATION OF THE B-CYTOCHROME COMPONENT OF THE HUMAN NEUTROPHIL MICROBICIDAL OXIDASE - TRANSLOCATION DURING ACTIVATION [J].
BORREGAARD, N ;
HEIPLE, JM ;
SIMONS, ER ;
CLARK, RA .
JOURNAL OF CELL BIOLOGY, 1983, 97 (01) :52-61
[8]   Abl tyrosine kinase regulates a Rac/JNK and a Rac/Nox pathway for DNA synthesis and Myc expression induced. by growth factors [J].
Boureux, A ;
Furstoss, O ;
Simon, V ;
Roche, S .
JOURNAL OF CELL SCIENCE, 2005, 118 (16) :3717-3726
[9]   c-Ab1 has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines [J].
Brasher, BB ;
Van Etten, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (45) :35631-35637
[10]   Ca2+ is mobilized by hydroxyl radical but not by superoxide in RTH-149 cells:: The oxidative switching-on of Ca2+ signaling [J].
Burlando, B ;
Viarengo, A .
CELL CALCIUM, 2005, 38 (05) :507-513