Direct writing of chitosan scaffolds using a robotic system

被引:83
作者
Geng, L [1 ]
Feng, W [1 ]
Hutmacher, DW [1 ]
Wong, YS [1 ]
Loh, HT [1 ]
Fuh, JYH [1 ]
机构
[1] Natl Univ Singapore, Singapore 117548, Singapore
关键词
rapid prototypes; biotechnology;
D O I
10.1108/13552540510589458
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Purpose - This paper aims to present a novel rapid prototyping (RP) fabrication methods and preliminary characterization for chitosan scaffolds. Design - A desktop rapid prototyping robot dispensing (RPBOD) system has been developed to fabricate scaffolds for tissue engineering (TE) applications. The system is a computer-controlled four-axis machine with a multiple-dispenser head. Neutralization of the acetic acid by the sodium hydroxide results in a precipitate to form a gel-like chitosan strand. The scaffold properties were characterized by scanning electron microscopy, porosity calculation and compression test. An example of fabrication of a freeform hydrogel scaffold is demonstrated, The required geometric data for the freeform scaffold were obtained from CT-scan images and the dispensing path control data were converted form its volume model, The applications of the scaffolds are discussed based on its potential for TE. Findings - It is shown that the MOD system can be interfaced with imaging techniques and computational modeling to produce scaffolds which can be customized in overall size and shape allowing tissue-engineered grafts to be tailored to specific applications or even for individual patients. Research limitations/implications - Important challenges for further research are the incorporation of growth factors, as well as cell seeding into the 3D dispensing plotting materials. Improvements regarding the mechanical properties of the scaffolds are also necessary. Originality/value - One of the important aspects of TE is the design scaffolds. For customized TE, it is essential to be able to fabricate 3D scaffolds of various geometric shapes, in order to repair tissue defects. RP or solid free-form fabrication techniques hold great promise for designing 3D customized scaffolds; yet traditional cell-seeding techniques may not provide enough cell mass for larger constructs. This paper presents a novel attempt to fabricate 3D scaffolds, using hydrogels which in the future can be combined with cells.
引用
收藏
页码:90 / 97
页数:8
相关论文
共 32 条
[1]   Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system [J].
Ang, TH ;
Sultana, FSA ;
Hutmacher, DW ;
Wong, YS ;
Fuh, JYH ;
Mo, XM ;
Loh, HT ;
Burdet, E ;
Teoh, SH .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2002, 20 (1-2) :35-42
[2]   Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices [J].
Endres, M ;
Hutmacher, DW ;
Salgado, AJ ;
Kaps, C ;
Ringe, J ;
Reis, RL ;
Sittinger, M ;
Brandwood, A ;
Schantz, JT .
TISSUE ENGINEERING, 2003, 9 (04) :689-702
[3]   Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing [J].
Giordano, RA ;
Wu, BM ;
Borland, SW ;
Cima, LG ;
Sachs, EM ;
Cima, MJ .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1996, 8 (01) :63-75
[4]   Microperiodic structures - Direct writing of three-dimensional webs [J].
Gratson, GM ;
Xu, MJ ;
Lewis, JA .
NATURE, 2004, 428 (6981) :386-386
[5]   An image-based approach for designing and manufacturing craniofacial scaffolds [J].
Hollister, SJ ;
Levy, RA ;
Chu, TM ;
Halloran, JW ;
Feinberg, SE .
INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2000, 29 (01) :67-71
[6]   Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints [J].
Hollister, SJ ;
Maddox, RD ;
Taboas, JM .
BIOMATERIALS, 2002, 23 (20) :4095-4103
[7]   Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ε-caprolactone in the presence of poly(ethylene glycol) [J].
Huang, MH ;
Li, SM ;
Hutmacher, DW ;
Schantz, JT ;
Vacanti, CA ;
Braud, C ;
Vert, M .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2004, 69A (03) :417-427
[8]  
Hutmacher DW, 2001, J BIOMED MATER RES, V55, P203, DOI 10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO
[9]  
2-7
[10]   Scaffolds in tissue engineering bone and cartilage [J].
Hutmacher, DW .
BIOMATERIALS, 2000, 21 (24) :2529-2543