The high resolution crystal structure of a native thermostable serpin reveals the complex mechanism underpinning the stressed to relaxed transition

被引:27
作者
Fulton, KF
Buckle, AM
Cabrita, LD
Irving, JA
Butcher, RE
Smith, I
Reeve, S
Lesk, AM
Bottomley, SP
Rossjohn, J
Whisstock, JC
机构
[1] Monash Univ, Prot Crystallog Unit, Monash Ctr Synchrotron Sci,Dept Biochem & Mol Biol, Sch Biomed Sci,Fac Med, Clayton, Vic 3800, Australia
[2] Monash Univ, Victorian Bioinformat Consortium, Clayton, Vic 3800, Australia
[3] Monash Univ, Australian Res Council, Ctr Struct & Funct Microbial Genom, Clayton, Vic 3800, Australia
[4] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
关键词
D O I
10.1074/jbc.M410206200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Serpins fold into a native metastable state and utilize a complex conformational change to inhibit target proteases. An undesirable result of this conformational flexibility is that most inhibitory serpins are heat sensitive, forming inactive polymers at elevated temperatures. However, the prokaryote serpin, thermopin, from Thermobifida fusca is able to function in a heated environment. We have determined the 1.8 Angstrom x- ray crystal structure of thermopin in the native, inhibitory conformation. A structural comparison with the previously determined 1.5 Angstrom structure of cleaved thermopin provides detailed insight into the complex mechanism of conformational change in serpins. Flexibility in the shutter region and electrostatic interactions at the top of the A beta- sheet ( the breach) involving the C- terminal tail, a unique structural feature of thermopin, are postulated to be important for controlling inhibitory activity and triggering conformational change, respectively, in the native state. Here we have discussed the structural basis of how this serpin reconciles the thermodynamic instability necessary for function with the stability required to withstand elevated temperatures.
引用
收藏
页码:8435 / 8442
页数:8
相关论文
共 65 条
[1]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[2]   Antithrombins Wibble and Wobble (T85M/K): Archetypal conformational diseases with in vivo latent - Transition, thrombosis, and heparin activation [J].
Beauchamp, NJ ;
Pike, RN ;
Daly, M ;
Butler, L ;
Makris, M ;
Dafforn, TR ;
Zhou, A ;
Fitton, HL ;
Preston, FE ;
Peake, IR ;
Carrell, RW .
BLOOD, 1998, 92 (08) :2696-2706
[3]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[4]   Different conformational changes within the F-helix occur during serpin folding, polymerization, and proteinase lnhibition [J].
Cabrita, LD ;
Dai, WW ;
Bottomley, SP .
BIOCHEMISTRY, 2004, 43 (30) :9834-9839
[5]   How do proteins avoid becoming too stable? Biophysical studies into metastable proteins [J].
Cabrita, LD ;
Bottomley, SP .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2004, 33 (02) :83-88
[6]   PLAKALBUMIN, ALPHA-1-ANTITRYPSIN, ANTITHROMBIN AND THE MECHANISM OF INFLAMMATORY THROMBOSIS [J].
CARRELL, RW ;
OWEN, MC .
NATURE, 1985, 317 (6039) :730-732
[7]   Mechanisms of disease -: Alpha1-antitrypsin deficiency -: A model for conformational diseases [J].
Carrell, RW ;
Lomas, DA .
NEW ENGLAND JOURNAL OF MEDICINE, 2002, 346 (01) :45-53
[8]   Promiscuous beta-strand interactions and the conformational diseases [J].
Chow, MKM ;
Lomas, DA ;
Bottomley, SP .
CURRENT MEDICINAL CHEMISTRY, 2004, 11 (04) :491-499
[9]   A kinetic mechanism for the polymerization of α1-antitrypsin [J].
Dafforn, TR ;
Mahadeva, R ;
Elliott, PR ;
Sivasothy, P ;
Lomas, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (14) :9548-9555
[10]   The crystal structure of a hyperthermophilic archaeal TATA-box binding protein [J].
DeDecker, BS ;
OBrien, R ;
Fleming, PJ ;
Geiger, JH ;
Jackson, SP ;
Sigler, PB .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 264 (05) :1072-1084