High conductivity carbon nanotube wires from radial densification and ionic doping

被引:94
作者
Alvarenga, Jack [1 ]
Jarosz, Paul R. [1 ]
Schauerman, Chris M. [1 ]
Moses, Brian T. [1 ]
Landi, Brian J. [1 ]
Cress, Cory D. [2 ]
Raffaelle, Ryne P. [3 ]
机构
[1] Rochester Inst Technol, NanoPower Res Labs, Rochester, NY 14623 USA
[2] USN, Res Lab, Washington, DC 20375 USA
[3] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
CHEMICAL TREATMENT; FIBERS; TRANSPORT; NETWORKS;
D O I
10.1063/1.3506703
中图分类号
O59 [应用物理学];
学科分类号
摘要
Application of drawing dies to radially densify sheets of carbon nanotubes (CNTs) into bulk wires has shown the ability to control electrical conductivity and wire density. Simultaneous use of KAuBr(4) doping solution, during wire drawing, has led to an electrical conductivity in the CNT wire of 1.3 x10(6) S/m. Temperature-dependent electrical measurements show that conduction is dominated by fluctuation-assisted tunneling, and introduction of KAuBr(4) significantly reduces the tunneling barrier between individual nanotubes. Ultimately, the concomitant doping and densification process leads to closer packed CNTs and a reduced charge transfer barrier, resulting in enhanced bulk electrical conductivity. (c) 2010 American Institute of Physics. [doi:10.1063/1.3506703]
引用
收藏
页数:3
相关论文
共 21 条
[1]   Reversibility, dopant desorption, and tunneling in the temperature-dependent conductivity of type-separated, conductive carbon nanotube networks [J].
Barnes, Teresa M. ;
Blackburn, Jeffrey L. ;
van de Lagemaat, Jao ;
Coutts, Timothy J. ;
Heben, Michael J. .
ACS NANO, 2008, 2 (09) :1968-1976
[2]   Carbon nanotube-based neat fibers [J].
Behabtu, Natnael ;
Green, Micah J. ;
Pasquali, Matteo .
NANO TODAY, 2008, 3 (5-6) :24-34
[3]   Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes [J].
Brown, E ;
Hao, L ;
Gallop, JC ;
Macfarlane, JC .
APPLIED PHYSICS LETTERS, 2005, 87 (02)
[4]   Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes [J].
Choi, HC ;
Shim, M ;
Bangsaruntip, S ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (31) :9058-9059
[5]   Radiation effects in single-walled carbon nanotube papers [J].
Cress, Cory D. ;
Schauerman, Christopher M. ;
Landi, Brian J. ;
Messenger, Scott R. ;
Raffaelle, Ryne P. ;
Walters, Robert J. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (01)
[6]   ADVANCED METALS FOR AEROSPACE AND AUTOMOTIVE USE [J].
FROES, FH .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 184 (02) :119-133
[7]   Modelling conduction in carbon nanotube networks with different thickness, chemical treatment and irradiation [J].
Kaiser, A. B. ;
Skakalova, V. ;
Roth, S. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (07) :2311-2318
[8]   Electronic transport properties of conducting polymers and carbon nanotubes [J].
Kaiser, AB .
REPORTS ON PROGRESS IN PHYSICS, 2001, 64 (01) :1-49
[9]   High energy density lithium-ion batteries with carbon nanotube anodes [J].
Landi, Brian J. ;
Cress, Cory D. ;
Raffaelle, Ryne P. .
JOURNAL OF MATERIALS RESEARCH, 2010, 25 (08) :1636-1644
[10]  
Lee R. S., 1997, NATURE, V388, P854