The maximum speed of dynamical evolution

被引:733
作者
Margolus, N [1 ]
Levitin, LB
机构
[1] Boston Univ, Ctr Computat Sci, Boston, MA 02215 USA
[2] Boston Univ, MIT, Artificial Intelligence Lab, Boston, MA 02215 USA
[3] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
来源
PHYSICA D | 1998年 / 120卷 / 1-2期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0167-2789(98)00054-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the problem of counting the maximum number of distinct states that an isolated physical system can pass through in a given period of time - its maximum speed of dynamical evolution. Previous analyses have given bounds in terms of Delta E, the standard deviation of the energy of the system; here we give a strict bound that depends only on E - E-0, the system's average energy minus its ground state energy. We also discuss bounds on information processing rates implied by our bound on the speed of dynamical evolution. For example, adding 1 J of energy to a given computer can never increase its processing rate by more than about 3 x 10(33) operations per second. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:188 / 195
页数:8
相关论文
共 23 条
[1]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[2]   ENTROPY CONTENT AND INFORMATION-FLOW IN SYSTEMS WITH LIMITED ENERGY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1984, 30 (08) :1669-1679
[4]  
BIAFORE M, 1993, MITLCSTR597
[5]   Generalized uncertainty relations: Theory, examples, and Lorentz invariance [J].
Braunstein, SL ;
Caves, CM ;
Milburn, GJ .
ANNALS OF PHYSICS, 1996, 247 (01) :135-173
[6]  
Bremermann H. J., 1967, P 5 BERK S MATH STAT, V4, P15
[7]  
FEYNMAN RP, 1985, OPT NEWS, V11
[8]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[9]  
Huang K., 1963, Statistical Mechanics