Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base

被引:141
作者
Bell, Robin E. [1 ]
Ferraccioli, Fausto [2 ]
Creyts, Timothy T. [1 ]
Braaten, David [3 ]
Corr, Hugh [2 ]
Das, Indrani [1 ]
Damaske, Detlef [4 ]
Frearson, Nicholas [1 ]
Jordan, Thomas [2 ]
Rose, Kathryn [2 ]
Studinger, Michael [5 ,6 ]
Wolovick, Michael [1 ]
机构
[1] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[2] British Antarctic Survey, Cambridge CB3 0ET, England
[3] Univ Kansas, Ctr Remote Sensing Ice Sheets, Lawrence, KS 66045 USA
[4] Bundesanstalt Geowissensch & Rohstoffe, D-3000 Hannover, Germany
[5] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA
[6] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
关键词
LAKE VOSTOK;
D O I
10.1126/science.1200109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An International Polar Year aerogeophysical investigation of the high interior of East Antarctica reveals widespread freeze-on that drives substantial mass redistribution at the bottom of the ice sheet. Although the surface accumulation of snow remains the primary mechanism for ice sheet growth, beneath Dome A, 24% of the base by area is frozen-on ice. In some places, up to half of the ice thickness has been added from below. These ice packages result from the conductive cooling of water ponded near the Gamburtsev Subglacial Mountain ridges and the supercooling of water forced up steep valley walls. Persistent freeze-on thickens the ice column, alters basal ice rheology and fabric, and upwarps the overlying ice sheet, including the oldest atmospheric climate archive, and drives flow behavior not captured in present models.
引用
收藏
页码:1592 / 1595
页数:4
相关论文
共 13 条
[1]   Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory [J].
Alley, RB ;
Lawson, DE ;
Evenson, EB ;
Strasser, JC ;
Larson, GJ .
JOURNAL OF GLACIOLOGY, 1998, 44 (148) :563-569
[2]   Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet [J].
Bell, RE ;
Studinger, M ;
Tikku, AA ;
Clarke, GKC ;
Gutner, MM ;
Meertens, C .
NATURE, 2002, 416 (6878) :307-310
[3]  
BELL RES, 2009, 2009 FULL M AM GEOPH
[4]  
CREYTS TT, 2010, 2010 FALL M AM GEOPH
[5]   Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 [J].
DeConto, RM ;
Pollard, D .
NATURE, 2003, 421 (6920) :245-249
[6]   Layer disturbances and the radio-echo free zone in ice sheets [J].
Drews, R. ;
Eisen, O. ;
Weikusat, I. ;
Kipfstuhl, S. ;
Lambrecht, A. ;
Steinhage, D. ;
Wilhelms, F. ;
Miller, H. .
CRYOSPHERE, 2009, 3 (02) :195-203
[7]   Nature of radio echo layering in the Antarctic ice sheet detected by a two-frequency experiment [J].
Fujita, S ;
Maeno, H ;
Uratsuka, S ;
Furukawa, T ;
Mae, S ;
Fujii, Y ;
Watanabe, O .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1999, 104 (B6) :13013-13024
[8]   Radio echo sounding of Pine Island Glacier, West Antarctica:: Aperture synthesis processing and analysis of feasibility from space [J].
Heliere, Florence ;
Lin, Chung-Chi ;
Corr, Hugh ;
Vaughan, David .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (08) :2573-2582
[9]   Radar detection of accreted ice over Lake Vostok, Antarctica [J].
MacGregor, J. A. ;
Matsuoka, K. ;
Studinger, M. .
EARTH AND PLANETARY SCIENCE LETTERS, 2009, 282 (1-4) :222-233
[10]   Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model [J].
Pattyn, Frank .
EARTH AND PLANETARY SCIENCE LETTERS, 2010, 295 (3-4) :451-461