Charybdotoxin binding in the IKs pore demonstrates two MinK subunits in each channel complex

被引:114
作者
Chen, HJ [1 ]
Kim, LA [1 ]
Rajan, S [1 ]
Xu, SH [1 ]
Goldstein, SAN [1 ]
机构
[1] Yale Univ, Sch Med, Boyer Ctr Mol Med, Dept Cellular & Mol Physiol,Dept Pediat, New Haven, CT 06536 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0896-6273(03)00570-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
I-Ks voltage-gated K+ channels contain four pore-forming KCNQ1 subunits and MinK accessory subunits in a number that has been controversial. Here, I-Ks channels assembled naturally by monomer subunits are compared to those with linked subunits that force defined stoichiometries. Two strategies that exploit charybdotoxin (CTX)-sensitive subunit variants are applied. First, CTX on rate, off rate, and equilibrium affinity are found to be the same for channels of monomers and those with a fixed 2:4 MinK:KCNQ1 valence. Second, H-3-CTX and an antibody are used to directly quantify channels and MinK subunits, respectively, showing 1.97 +/- 0.07 MinK per I-Ks channel. Additional MinK subunits do not enter channels of monomeric subunits or those with fixed 2:4 valence. We conclude that two MinK subunits are necessary, sufficient, and the norm in I-Ks channels. This stoichiometry is expected for other K+ channels that contain MinK or MinK-related peptides (MiRPs).
引用
收藏
页码:15 / 23
页数:9
相关论文
共 41 条
[1]   A superfamily of small potassium channel subunits: form and function of the MinK-related peptides (MiRPs) [J].
Abbott, GW ;
Goldstein, SAN .
QUARTERLY REVIEWS OF BIOPHYSICS, 1998, 31 (04) :357-398
[2]   Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism [J].
Abbott, GW ;
Goldstein, SAN .
FASEB JOURNAL, 2002, 16 (03) :390-400
[3]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[4]   RNA interference reveals that endogenous Xenopus MinK-related peptides govern mammalian K+ channel function in oocyte expression studies [J].
Anantharam, A ;
Lewis, A ;
Panaghie, G ;
Gordon, E ;
McCrossan, ZA ;
Lerner, DJ ;
Abbott, GW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (14) :11739-11745
[5]   K(v)LQT1 and IsK (minK) proteins associate to form the I-Ks cardiac potassium current [J].
Barhanin, J ;
Lesage, F ;
Guillemare, E ;
Fink, M ;
Lazdunski, M ;
Romey, G .
NATURE, 1996, 384 (6604) :78-80
[6]   A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans [J].
Bianchi, L ;
Kwok, SM ;
Driscoll, M ;
Sesti, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (14) :12415-12424
[7]   Pore- and state-dependent cadmium block of IKs channels formed with MinK-55C and wild-type KCNQ1 subunits [J].
Chen, HJ ;
Sesti, F ;
Goldstein, SAN .
BIOPHYSICAL JOURNAL, 2003, 84 (06) :3679-3689
[8]   Association and stoichiometry of K-ATP channel subunits [J].
Clement, JP ;
Kunjilwar, K ;
Gonzalez, G ;
Schwanstecher, M ;
Panten, U ;
AguilarBryan, L ;
Bryan, J .
NEURON, 1997, 18 (05) :827-838
[9]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[10]   SITE-SPECIFIC MUTATIONS IN A MINIMAL VOLTAGE-DEPENDENT K+ CHANNEL ALTER ION SELECTIVITY AND OPEN-CHANNEL BLOCK [J].
GOLDSTEIN, SAN ;
MILLER, C .
NEURON, 1991, 7 (03) :403-408