Hybrid intelligent approach for short-term wind power forecasting in Portugal

被引:57
作者
Catalao, J. P. S. [1 ,2 ]
Pousinho, H. M. I. [1 ]
Mendes, V. M. F. [3 ]
机构
[1] Univ Beira Interior, Dept Electromech Engn, P-6201001 R Fonte Do Lameiro, Covilha, Portugal
[2] Inst Super Tecn, Ctr Innovat Elect & Energy Engn, P-1049001 Lisbon, Portugal
[3] Inst Super Engn Lisboa, Dept Elect Engn & Automat, P-1950062 Lisbon, Portugal
关键词
NEURAL-NETWORK APPROACH; WAVELET TRANSFORM; ARIMA MODELS; MARKET; SPEED; GENERATION; PREDICTION; RESOURCE; SYSTEMS; PRICES;
D O I
10.1049/iet-rpg.2009.0155
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges because of its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this study, a hybrid intelligent approach is proposed for short-term wind power forecasting in Portugal. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Conclusions are duly drawn.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 24 条
[1]   Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm [J].
Amjady, N. ;
Keynia, F. .
ENERGY, 2009, 34 (01) :46-57
[2]   Day ahead price forecasting of electricity markets by a mixed data model and hybrid forecast method [J].
Amjady, Nima ;
Keynia, Farshid .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (09) :533-546
[3]   Entropy and Correntropy Against Minimum Square Error in Offline and Online Three-Day Ahead Wind Power Forecasting [J].
Bessa, Ricardo J. ;
Miranda, Vladimiro ;
Gama, Joao .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (04) :1657-1666
[4]   Short-term electricity prices forecasting in a competitive market: A neural network approach [J].
Catalao, J. P. S. ;
Mariano, S. J. P. S. ;
Mendes, V. M. F. ;
Ferreira, L. A. F. M. .
ELECTRIC POWER SYSTEMS RESEARCH, 2007, 77 (10) :1297-1304
[5]  
Catalao JPS, 2009, ENG INTELL SYST ELEC, V17, P5, DOI 10.1109/ISAP.2009.5352853
[6]   Day-ahead electricity price forecasting using the wavelet transform and ARIMA models [J].
Conejo, AJ ;
Plazas, MA ;
Espínola, R ;
Molina, AB .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) :1035-1042
[7]   A review on the young history of the wind power short-term prediction [J].
Costa, Alexandre ;
Crespo, Antonio ;
Navarro, Jorge ;
Lizcano, Gil ;
Madsen, Henrik ;
Feitosa, Everaldo .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (06) :1725-1744
[8]   Improved Grey predictor rolling models for wind power prediction [J].
El-Fouly, T. H. M. ;
El-Saadany, E. F. ;
Salama, M. M. A. .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2007, 1 (06) :928-937
[9]   ANFIS - ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM [J].
JANG, JSR .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1993, 23 (03) :665-685
[10]   Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models [J].
Jursa, Rene ;
Rohrig, Kurt .
INTERNATIONAL JOURNAL OF FORECASTING, 2008, 24 (04) :694-709