Knockout of major leaf ferredoxin reveals new redox-regulatory adaptations in Arabidopsis thaliana

被引:54
作者
Voss, Ingo [1 ]
Koelmann, Meike [1 ]
Wojtera, Joanna [1 ]
Holtgrefe, Simone [1 ]
Kitzmann, Camillo [1 ]
Backhausen, Jan E. [1 ]
Scheibe, Renate [1 ]
机构
[1] Univ Osnabruck, Fac Biol & Chem, Dept Plant Physiol, D-49069 Osnabruck, Germany
关键词
D O I
10.1111/j.1399-3054.2008.01112.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ferredoxins are the major distributors for electrons to the various acceptor systems in plastids. In green tissues, ferredoxins are reduced by photosynthetic electron flow in the light, while in heterotrophic tissues, nicotinamide adenine dinucleotide (reduced) (NADPH) generated in the oxidative pentose-phosphate pathway (OPP) is the reductant. We have used a Ds-T-DNA insertion line of Arabidopsis thaliana for the gene encoding the major leaf ferredoxin (Fd2, At1g60950) to create a situation of high electron pressure in the thylakoids. Although these plants (Fd2-KO) possess only the minor fraction of leaf Fd1 (At1g10960), they grow photoautotrophically on soil, but with a lower growth rate and less chlorophyll. The more oxidized conditions in the stroma due to the formation of reactive oxygen species are causing a re-adjustment of the redox state in these plants that helps them to survive even under high light. Redox homeostasis is achieved by regulation at both, the post-translational and the transcriptional level. Over-reduction of the electron transport chain leads to increased transcription of the malate-valve enzyme NADP-malate dehydrogenase (MDH), and the oxidized stroma leads to an increased transcription of the OPP enzyme glucose-6-P dehydrogenase. In isolated spinach chloroplasts, oxidized conditions give rise to a decreased activation state of NADP-MDH and an activation of glucose-6-P dehydrogenase even in the light. In Fd2-KO plants, NADPH-requiring antioxidant systems are upregulated. These adjustments must be caused by plastid signals, and they prevent oxidative damage under rather severe conditions.
引用
收藏
页码:584 / 598
页数:15
相关论文
共 50 条
[1]  
Ahn JH, 2002, ARABIDOPSIS LAB MANU, P174
[2]   Electron acceptors in isolated intact spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons [J].
Backhausen, JE ;
Kitzmann, C ;
Horton, P ;
Scheibe, R .
PHOTOSYNTHESIS RESEARCH, 2000, 64 (01) :1-13
[3]   Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase:: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts [J].
Backhausen, JE ;
Emmerlich, A ;
Holtgrefe, S ;
Horton, P ;
Nast, G ;
Rogers, JJM ;
Müller-Röber, B ;
Scheibe, R .
PLANTA, 1998, 207 (01) :105-114
[4]   COMPETITION BETWEEN ELECTRON ACCEPTORS IN PHOTOSYNTHESIS - REGULATION OF THE MALATE VALVE DURING CO2 FIXATION AND NITRITE REDUCTION [J].
BACKHAUSEN, JE ;
KITZMANN, C ;
SCHEIBE, R .
PHOTOSYNTHESIS RESEARCH, 1994, 42 (01) :75-86
[5]   The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants [J].
Baier, M ;
Dietz, KJ .
PLANT JOURNAL, 1997, 12 (01) :179-190
[6]   Influence of the photoperiod on redox regulation and stress responses in Arabidopsis thaliana L. (Heynh.) plants under long- and short-day conditions [J].
Becker, Beril ;
Holtgrefe, Simone ;
Jung, Sabrina ;
Wunrau, Christina ;
Kandlbinder, Andrea ;
Baier, Margarete ;
Dietz, Karl-Josef ;
Backhausen, Jan E. ;
Scheibe, Renate .
PLANTA, 2006, 224 (02) :380-393
[7]   PHOTON YIELD OF O-2 EVOLUTION AND CHLOROPHYLL FLUORESCENCE CHARACTERISTICS AT 77-K AMONG VASCULAR PLANTS OF DIVERSE ORIGINS [J].
BJORKMAN, O ;
DEMMIG, B .
PLANTA, 1987, 170 (04) :489-504
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   ROLE OF LIGHT IN THE REGULATION OF CHLOROPLAST ENZYMES [J].
BUCHANAN, BB .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1980, 31 :341-374
[10]   Regulation of the Arabidopsis transcriptome by oxidative stress [J].
Desikan, R ;
Mackerness, SAH ;
Hancock, JT ;
Neill, SJ .
PLANT PHYSIOLOGY, 2001, 127 (01) :159-172