Prediction of transition state barriers and enthalpies of reaction by a new hybrid density-functional approximation

被引:177
作者
Kang, JK [1 ]
Musgrave, CB
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
关键词
D O I
10.1063/1.1415079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a new hybrid density-functional method which predicts transition state barriers with the same accuracy as CBS-APNO, and transition state barriers and enthalpies of reaction with smaller errors than B3LYP, BHandHLYP, and G2. The accuracy of the new method is demonstrated on 132 energies, including 74 transition state barriers and 58 enthalpies of reaction. For 40 reactions with reliable experimental barriers, the absolute mean deviations of the transition state barriers are 0.9, 1.0, 3.1, 3.5, and 3.6 kcal/mol for the new method and the CBS-APNO, G2, B3LYP, and BHandHLYP methods, respectively. The absolute mean deviations of the enthalpies of reaction for 38 reactions with reliable experimental enthalpies are 1.2, 1.4, 3.0, and 5.9 kcal/mol for the new method and the G2, B3LYP, and BHandHLYP methods, respectively. For the new method the maximum absolute deviations for the barriers and enthalpies of reaction are 2.6 and 5.6 kcal/mol, respectively. In addition, we present a simple scheme for a high-level correction that allows accurate determination of atomization energies. The accuracy of this scheme is demonstrated on the 55 atomization energies of the G2 test set [J. Chem. Phys. 94, 7221 (1992)]. (C) 2001 American Institute of Physics.
引用
收藏
页码:11040 / 11051
页数:12
相关论文
共 108 条
[1]   Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:: The mPW and mPW1PW models [J].
Adamo, C ;
Barone, V .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (02) :664-675
[2]  
[Anonymous], J PHYS CHEM REF DA S
[3]   Gas phase ion chemistry and ab initio theoretical study of phosphine .1. [J].
Antoniotti, P ;
Operti, L ;
Rabezzana, R ;
Splendore, M ;
Tonachini, G ;
Vaglio, GA .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (05) :1491-1500
[4]   EVALUATED KINETIC AND PHOTOCHEMICAL DATA FOR ATMOSPHERIC CHEMISTRY .3. IUPAC SUBCOMMITTEE ON GAS KINETIC DATA EVALUATION FOR ATMOSPHERIC CHEMISTRY [J].
ATKINSON, R ;
BAULCH, DL ;
COX, RA ;
HAMPSON, RF ;
KERR, JA ;
TROE, J .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1989, 18 (02) :881-1097
[5]   EVALUATED KINETIC AND PHOTOCHEMICAL DATA FOR ATMOSPHERIC CHEMISTRY SUPPLEMENT-IV - IUPAC SUBCOMMITTEE ON GAS KINETIC DATA EVALUATION FOR ATMOSPHERIC CHEMISTRY [J].
ATKINSON, R ;
BAULCH, DL ;
COX, RA ;
HAMPSON, RF ;
KERR, JA ;
TROE, J .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1992, 21 (06) :1125-1568
[6]   Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry .5. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry [J].
Atkinson, R ;
Baulch, DL ;
Cox, RA ;
Hampson, RF ;
Kerr, JA ;
Rossi, MJ ;
Troe, J .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1997, 26 (03) :521-1011
[7]   Influence of CF3I, CF3Br, and CF3H on the high-temperature combustion of methane [J].
Babushok, V ;
Noto, T ;
Burgess, DRF ;
Hamins, A ;
Tsang, W .
COMBUSTION AND FLAME, 1996, 107 (04) :351-367
[8]   A quantum chemical view of density functional theory [J].
Baerends, EJ ;
Gritsenko, OV .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (30) :5383-5403
[9]   Ab initio study of hydrogen abstraction reactions [J].
Basch, H ;
Hoz, S .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (24) :4416-4431
[10]  
BAULCH DL, 1981, J PHYS CHEM REF DATA, V10, P1