Time average in micromagnetism

被引:75
作者
Carbou, G [1 ]
Fabrie, P [1 ]
机构
[1] Univ Bordeaux 1, F-33405 Talence, France
关键词
D O I
10.1006/jdeq.1998.3444
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a model of ferromagnetic material governed by a nonlinear Laudau-Lifschitz equation coupled with Maxwell equations. We prove the existence of weak solutions. Then we prove that all points of the omega-limit set of any trajectories are solutions of the stationary model. Furthermore we derive rigourously the quasistatic model by an appropriate time average method. (C) 1998 Academic Press.
引用
收藏
页码:383 / 409
页数:27
相关论文
共 15 条
[1]  
ALOGUES F, COMMUNICATION
[2]   ON GLOBAL WEAK SOLUTIONS FOR LANDAU-LIFSHITZ EQUATIONS - EXISTENCE AND NONUNIQUENESS [J].
ALOUGES, F ;
SOYEUR, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (11) :1071-1084
[3]  
[Anonymous], 1969, ELECTRODYNAMIQUE MIL
[4]  
BROWN F, 1963, MICROMAGNETICS
[5]   Asymptotic behaviour of weak solutions for Landau-Lifschitz equations [J].
Carbou, G ;
Fabrie, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (07) :717-720
[6]   Quasi-stationary model for the micromagnetism theory [J].
Carbou, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08) :847-850
[7]  
Hormander L., 1996, PROGR NONLINEAR DIFF, V21
[8]  
JOLY JB, COMMUNICATION
[9]  
JOLY JL, 1996, EC POL SEM EDP
[10]  
JOLY P, UNPUB MATH NUMERICAL