A two-dimensional data distribution method for parallel sparse matrix-vector multiplication

被引:128
作者
Vastenhouw, B
Bisseling, RH
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, NL-3508 GA Utrecht, Netherlands
[2] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
关键词
matrix partitioning; matrix-vector multiplication; parallel computing; recursive bipartitioning; sparse matrix;
D O I
10.1137/S0036144502409019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new method is presented for distributing data in sparse matrix-vector multiplication. The method is two-dimensional, tries to minimize the true communication volume, and also tries to spread the computation and communication work evenly over the processors. The method starts with a recursive bipartitioning of the sparse matrix, each time splitting a rectangular matrix into two parts with a nearly equal number of nonzeros. The communication volume caused by the split is minimized. After the matrix partitioning, the input and output vectors are partitioned with the objective of minimizing the maximum communication volume per processor. Experimental results of our implementation, Mondriaan, for a set of sparse test matrices show a reduction in communication volume compared to one-dimensional methods, and in general a good balance in the communication work. Experimental timings of an actual parallel sparse matrix-vector multiplication on an SGI Origin 3800 computer show that a sufficiently large reduction in communication volume leads to savings in execution time.
引用
收藏
页码:67 / 95
页数:29
相关论文
共 46 条
[1]  
[Anonymous], U FLORIDA SPARSE MAT
[2]  
[Anonymous], 1970, BELL SYST TECH J, DOI [10.1002/j.1538-7305.1970.tb01770.x, DOI 10.1002/J.1538-7305.1970.TB01770.X]
[3]  
[Anonymous], ACM IEEE 2001 C SUP
[4]  
[Anonymous], 2001, 15 INT PARALLEL DIST, DOI DOI 10.1109/IPDPS.2001.925093
[5]  
Bai Z., 2000, TEMPLATES SOLUTION A, DOI DOI 10.1137/1.9780898719581
[6]  
Barrett R., 1994, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, V2nd ed.
[7]  
BERGER MJ, 1987, IEEE T COMPUT, V36, P570, DOI 10.1109/TC.1987.1676942
[8]   Matrices, vector spaces, and information retrieval [J].
Berry, MW ;
Drmac, Z ;
Jessup, ER .
SIAM REVIEW, 1999, 41 (02) :335-362
[9]  
BILDERBACK ML, 1999, P 9 SIAM C PAR PROC
[10]  
BISSELING RH, 1994, IFIP TRANS A, V51, P509