Phase synchronization in regular and chaotic systems

被引:196
作者
Pikovsky, A [1 ]
Rosenblum, M [1 ]
Kurths, J [1 ]
机构
[1] Univ Potsdam, Dept Phys, D-14415 Potsdam, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2000年 / 10卷 / 10期
关键词
D O I
10.1142/S0218127400001481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this contribution we present a brief introduction to the theory of synchronization of self-sustained oscillators. Classical results for synchronization of periodic motions and effects of noise on this process are reviewed and compared with recently found phase synchronization phenomena in chaotic oscillators. The basic notions of phase and frequency locking are reconsidered within a common framework. The application of phase synchronization to data analysis is discussed.
引用
收藏
页码:2291 / 2305
页数:15
相关论文
共 59 条
[1]  
Andronov A., 1930, ZH PRIKL FIZ J APPL, V7, P3
[2]  
Andronov A. A., 1930, ARCH ELEKTROTECH, VXXIV, P99, DOI 10.1007/BF01659580
[3]  
Anishchenko V. S., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P633, DOI 10.1142/S0218127492000756
[4]  
[Anonymous], 1968, FLUCTUATIONS SELF OS
[5]  
APPELTON EV, 1922, P CAMBRIDGE PHIL SOC, V21, P231
[6]  
Arnold VI., 1965, Trans. Am. Math. Soc. 2nd Ser, V46, P213, DOI [10.1007/BF00275153, 10.1090/trans2/046/11]
[7]  
Blekhman I.I., 1988, SYNCHRONIZATION SCI
[8]  
BLEKHMAN II, 1971, SYNCHRONIZATION DYNM
[9]  
Bogoliubov NN., 1961, Asymptotic methods in the theory of non-linear oscillations (In Russian)
[10]  
BREMSEN AS, 1941, Z TECHNICHESKOI FIZI, V11, P959