Concentrating partial entanglement by local operations

被引:2466
作者
Bennett, CH
Bernstein, HJ
Popescu, S
Schumacher, B
机构
[1] HAMPSHIRE COLL, AMHERST, MA 01002 USA
[2] INST SCI & INTERDISCIPLINARY STUDIES, AMHERST, MA 01002 USA
[3] TEL AVIV UNIV, DEPT PHYS, IL-69978 TEL AVIV, ISRAEL
[4] KENYON COLL, DEPT PHYS, GAMBIER, OH 43022 USA
来源
PHYSICAL REVIEW A | 1996年 / 53卷 / 04期
关键词
D O I
10.1103/PhysRevA.53.2046
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
If two separated observers are supplied with entanglement, in the form of n pairs of particles in identical partly entangled pure states, one member of each pair being given to each observer, they can, by local actions of each observer, concentrate this entanglement into a smaller number of maximally entangled pairs of particles, for example, Einstein-Podolsky-Rosen singlets, similarly shared between the two observers. The concentration process asymptotically conserves entropy of entanglement-the von Neumann entropy of the partial density matrix seen by either observer-with the yield of singlets approaching, for large n, the base-2 entropy of entanglement of the initial partly entangled pure state. Conversely, any pure or mixed entangled state of two systems can be produced by two classically communicating separated observers, drawing on a supply of singlets as their sole source of entanglement.
引用
收藏
页码:2046 / 2052
页数:7
相关论文
共 13 条
[1]   COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES [J].
BENNETT, CH ;
WIESNER, SJ .
PHYSICAL REVIEW LETTERS, 1992, 69 (20) :2881-2884
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]   REDUCTION OF QUANTUM ENTROPY BY REVERSIBLE EXTRACTION OF CLASSICAL INFORMATION [J].
BENNETT, CH ;
BRASSARD, G ;
JOZSA, R ;
MAYERS, D ;
PERES, A ;
SCHUMACHER, B ;
WOOTTERS, WK .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2307-2314
[4]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[5]  
GISIN N, COMMUNICATION
[6]  
Helstrom C. W., 1976, QUANTUM DETECTION ES
[7]   2 INTERFEROMETRIC COMPLEMENTARITIES [J].
JAEGER, G ;
SHIMONY, A ;
VAIDMAN, L .
PHYSICAL REVIEW A, 1995, 51 (01) :54-67
[8]   FIDELITY FOR MIXED QUANTUM STATES [J].
JOZSA, R .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2315-2323
[9]   A NEW PROOF OF THE QUANTUM NOISELESS CODING THEOREM [J].
JOZSA, R ;
SCHUMACHER, B .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2343-2349
[10]  
Peres A., 1993, QUANTUM THEORY CONCE, P131