Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells

被引:278
作者
Gu, N
Vervaeke, K
Hu, H
Storm, JF
机构
[1] Univ Oslo, Inst Basal Med, IMB, Dept Physiol, N-0317 Oslo, Norway
[2] Univ Oslo, Ctr Mol Biol & Neurosci, N-0317 Oslo, Norway
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2005年 / 566卷 / 03期
关键词
D O I
10.1113/jphysiol.2005.086835
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In hippocampal pyramidal cells, a single action potential (AP) or a burst of AN is followed by a medium afterhyperpolarization (mAHP, lasting similar to 0.1 s). The currents underlying the mAHP are considered to regulate excitability and cause early spike frequency adaptation, thus dampening the response to sustained excitatory input relative to responses to abrupt excitation. The mAHP was originally suggested to be primarily caused by M-channels (at depolarized potentials) and h-channels (at more negative potentials), but not SK channels. In recent reports, however, the mAHP was suggested to be generated mainly by SK channels or only by h-channels. We have now re-examined the mechanisms underlying the mAHP and early spike frequency adaptation in CA1 pyramidal cells by using sharp electrode and whole-cell recording in rat hippocampal slices. The specific M-channel blocker XE991 (10 mu M) suppressed the mAHP following 1-5 APs evoked by current injection at -60 mV. XE991 also enhanced the excitability of the cell, i.e. increased the number of AN evoked by a constant depolarizing current pulse, reduced their rate of adaptation, enhanced the afterdepolarization and promoted bursting. Conversely, the M-channel opener retigabine reduced excitability. The h-channel blocker ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride; 10 mu M) fully suppressed the mAHP at -80 mV, but had little effect. at -60 mV, whereas XE991 did not measurably affect the mAHP at -80 mV. Likewise, ZD7288 had little or no effect on excitability or adaptation during current pulses injected from -60 mV, but changed the initial discharge during depolarizing pulses injected from -80 mV. In contrast to previous reports, we found that blockade of Ca2+ -activated K+ channels of the SK/K-Ca type by apamin (100-400 nm) failed to affect the mAHP or adaptation. A computational model of a CA1 pyramidal cell predicted that M- and h-channels will generate mAHPs in a voltage-dependent manner, as indicated by the experiments. We conclude that M- and h-channels generate the somatic mAHP in hippocampal pyramidal cells, with little or no net contribution from SK channels.
引用
收藏
页码:689 / 715
页数:27
相关论文
共 96 条
[1]   Relationships between intracellular calcium and afterhyperpolarizations in neocortical pyramidal neurons [J].
Abel, HJ ;
Lee, JCF ;
Callaway, JC ;
Foehring, RC .
JOURNAL OF NEUROPHYSIOLOGY, 2004, 91 (01) :324-335
[2]  
Aiken S P, 1996, Adv Pharmacol, V35, P349, DOI 10.1016/S1054-3589(08)60281-1
[3]   A potassium channel mutation in neonatal human epilepsy [J].
Biervert, C ;
Schroeder, BC ;
Kubisch, C ;
Berkovic, SF ;
Propping, P ;
Jentsch, TJ ;
Steinlein, OK .
SCIENCE, 1998, 279 (5349) :403-406
[4]   Small-conductance calcium-activated potassium channels [J].
Bond, CT ;
Maylie, J ;
Adelman, JP .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :370-378
[5]   A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation [J].
Borgatti, R ;
Zucca, C ;
Cavallini, A ;
Ferrario, M ;
Panzeri, C ;
Castaldo, P ;
Soldovieri, MV ;
Baschirotto, C ;
Bresolin, N ;
Dalla Bernardina, B ;
Taglialatela, M ;
Bassi, MT .
NEUROLOGY, 2004, 63 (01) :57-65
[6]  
BORGGRAHAM L, 1999, CEREB CORTEX, P12
[7]  
Brown D A, 1988, Ion Channels, V1, P55
[8]   Theta oscillations in the hippocampus [J].
Buzsáki, G .
NEURON, 2002, 33 (03) :325-340
[9]   Unique roles of SK and Kv4.2 potassium channels in dendritic integration [J].
Cai, X ;
Liang, CW ;
Muralidharan, S ;
Kao, JPY ;
Tang, CM ;
Thompson, SM .
NEURON, 2004, 44 (02) :351-364
[10]   Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons [J].
Cingolani, LA ;
Gymnopoulos, M ;
Boccaccio, A ;
Stocker, M ;
Pedarzani, P .
JOURNAL OF NEUROSCIENCE, 2002, 22 (11) :4456-4467