Effect of TiO2 surface properties on performance of nafion-based composite membranes in high temperature and low relative humidity PEM fuel cells

被引:71
作者
Chalkova, E [1 ]
Fedkin, MV
Wesolowski, DJ
Lvov, SN
机构
[1] Penn State Univ, Energy Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Energy & Geoenvironm Engn, University Pk, PA 16802 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
D O I
10.1149/1.1971216
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nafion/10% (mass % is used in this paper) TiO2 composite membranes were studied in a H-2/O-2 proton exchange membrane (PEM) fuel cell over a range of relative humidity (RH) from 26 to 50% at temperatures of 80 and 120 degrees C. According to the scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) structural analysis, the composite Nafion/TiO2 membranes had a two-layer structure, one layer enriched with TiO2 particles, and the other dominated by the Nafion polymer. Although the TiO2 particles were mainly concentrated on one side of the composite membrane, sufficient hydration was apparently achieved for the whole membrane. Two TiO2 (rutile) powders used for the preparation of the composite membranes differed in specific surface area (SSA), surface zeta potential, and particle morphology. A TiO2 powder with five times higher SSA, 22 mV higher zeta potential (at the low-pH limit), and distinctly different individual particle and particle aggregate morphologies resulted in a four-times increase of current density (at 0.6 V) when the composite membranes were made and tested in PEM fuel cell at temperature of 120 degrees C and relative humidity of 26%. We speculate that a greater number of protonated sites per unit mass of powder in the membrane and a higher density of the protonated sites contribute to the enhanced fuel cell performance. (c) 2005 The Electrochemical Society.
引用
收藏
页码:A1742 / A1747
页数:6
相关论文
共 23 条
  • [1] Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80-140° C
    Adjemian, KT
    Lee, SJ
    Srinivasan, S
    Benziger, J
    Bocarsly, AB
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (03) : A256 - A261
  • [2] Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes
    Adjemian, KT
    Srinivasan, S
    Benziger, J
    Bocarsly, AB
    [J]. JOURNAL OF POWER SOURCES, 2002, 109 (02) : 356 - 364
  • [3] Composite membranes for medium-temperature PEM fuel cells
    Alberti, G
    Casciola, M
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 : 129 - 154
  • [4] Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation
    Antonucci, PL
    Aricò, AS
    Cretì, P
    Ramunni, E
    Antonucci, V
    [J]. SOLID STATE IONICS, 1999, 125 (1-4) : 431 - 437
  • [5] Aricò AS, 1998, ELECTROCHEM SOLID ST, V1, P66, DOI 10.1149/1.1390638
  • [6] Nafion-TiO2 composite DMFC membranes:: physico-chemical properties of the filler versus electrochemical performance
    Baglio, V
    Aricò, AS
    Di Blasi, A
    Antonucci, V
    Antonucci, PL
    Licoccia, S
    Traversa, E
    Fiory, FS
    [J]. ELECTROCHIMICA ACTA, 2005, 50 (05) : 1241 - 1246
  • [7] Baglio V, 2004, J NEW MAT ELECTR SYS, V7, P275
  • [8] Nafion/TiO2 proton conductive composite membranes for PEMFCs operating at elevated temperature and reduced relative humidity
    Chalkova, E
    Pague, MB
    Fedkin, MV
    Wesolowski, DJ
    Lvov, SN
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (06) : A1035 - A1040
  • [9] Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C
    Costamagna, P
    Yang, C
    Bocarsly, AB
    Srinivasan, S
    [J]. ELECTROCHIMICA ACTA, 2002, 47 (07) : 1023 - 1033
  • [10] High temperature microelectrophoresis studies of the rutile/aqueous solution interface
    Fedkin, MV
    Zhou, XYY
    Kubicki, JD
    Bandura, AV
    Lvov, SN
    Machesky, ML
    Wesolowski, DJ
    [J]. LANGMUIR, 2003, 19 (09) : 3797 - 3804