Pharmacologic modulation of glycogen synthase kinase-3β promotes p53-dependent apoptosis through a direct bax-mediated mitochondrial pathway in colorectal cancer cells

被引:114
作者
Tan, J [1 ]
Zhuang, L [1 ]
Leong, HS [1 ]
Iyer, NG [1 ]
Liu, ET [1 ]
Yu, Q [1 ]
机构
[1] Genome Inst Singapore, Mol Pharmacol Lab, Singapore 138672, Singapore
关键词
D O I
10.1158/0008-5472.CAN-05-1226
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Activation of p53 tumor suppressor induces either cell cycle arrest or apoptosis through transcription-dependent and independent pathways; however, their relative roles in apoptosis induction and how these pathways are regulated remains elusive. Here, we report a unique role for glycogen synthesis kinase-3 (GSK-3) in regulating p53 functions in human colorectal cancer cells. Pharmacologic modulation of GSK-3 beta markedly impaired p53-dependent transactivation of targets including p21. and Puma but promoted p53-dependent conformational activation of Bax, resulting in cytochrome c release, loss of mitochondrial membrane potential, and caspase-9 processing. Thus, p53-mediated damage response is converted from cell cycle arrest to apoptosis following exposure to a variety of chemotherapeutic agents. We found that this effect is associated with the modulation of inhibitory Ser(9) phosphorylation of GSK-beta but not with the activating tyrosine phosphorylation. We further show that the induction of apoptosis is through a direct mitochondrial pathway that requires Bax but not Puma. Our results underscore the importance of transcription-independent mechanism in p53-induced apoptosis and indicate that GSK-3p plays distinct dual roles in regulating p53 pathways: promoting p53 transcriptional activity in the nucleus but suppressing p53-mediated direct apoptotic function at the mitochondria. Importantly, our data suggest that small-molecule inhibition of GSK-3 beta might represent a novel approach for modulating chemotherapy.
引用
收藏
页码:9012 / 9020
页数:9
相关论文
共 59 条
[1]   Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis [J].
Attardi, LD ;
Lowe, SW ;
Brugarolas, J ;
Jacks, T .
EMBO JOURNAL, 1996, 15 (14) :3693-3701
[2]   Cell cycle arrest and DNA endoreduplication following p21Waf1/Cip1 expression [J].
Bates, S ;
Ryan, KM ;
Phillips, AC ;
Vousden, KH .
ONCOGENE, 1998, 17 (13) :1691-1703
[3]   Glycogen synthase kinase-3β facilitates staurosporine- and heat shock-induced apoptosis -: Protection by lithium [J].
Bijur, GN ;
De Sarno, P ;
Jope, RS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (11) :7583-7590
[4]   RADIATION-INDUCED CELL-CYCLE ARREST COMPROMISED BY P21 DEFICIENCY [J].
BRUGAROLAS, J ;
CHANDRASEKARAN, C ;
GORDON, JI ;
BEACH, D ;
JACKS, T ;
HANNON, GJ .
NATURE, 1995, 377 (6549) :552-557
[5]   Disruption of p53 in human cancer cells alters the responses to therapeutic agents [J].
Bunz, F ;
Hwang, PM ;
Torrance, C ;
Waldman, T ;
Zhang, YG ;
Dillehay, L ;
Williams, J ;
Lengauer, C ;
Kinzler, KW ;
Vogelstein, B .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (03) :263-269
[6]  
Burns TF, 1999, J CELL PHYSIOL, V181, P231, DOI 10.1002/(SICI)1097-4652(199911)181:2<231::AID-JCP5>3.0.CO
[7]  
2-L
[8]   P53-DEPENDENT APOPTOSIS IN THE ABSENCE OF TRANSCRIPTIONAL ACTIVATION OF P53-TARGET GENES [J].
CAELLES, C ;
HELMBERG, A ;
KARIN, M .
NATURE, 1994, 370 (6486) :220-223
[9]  
Chan TA, 2000, GENE DEV, V14, P1584
[10]   p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage [J].
Chao, C ;
Saito, S ;
Kang, J ;
Anderson, CW ;
Appella, E ;
Xu, Y .
EMBO JOURNAL, 2000, 19 (18) :4967-4975