The ζ(2) limit in the random assignment problem

被引:165
作者
Aldous, DJ [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
assignment problem; bipartite matching; cavity method; combinatorial optimization; distributional identity; infinite tree; probabilistic analysis of algorithms; probabilistic combinatorics; random matrix; replica method; replica symmetry;
D O I
10.1002/rsa.1015
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The random assignment (or bipartite matching) problem asks about A, min(pi) Sigma (n)(i=1) c(i, pi (i)), where (c(i, j)) is a n x n matrix with i.i.d. entries, say with exponential(1) distribution, and the minimum is over permutations pi. Mezard and Parisi (1987) used the replica method from statistical physics to argue nonrigorously that EA(n) --> zeta (2) = pi (2)/6. Aldous (1992) identified the limit in terms of a matching problem on a limit infinite tree. Herl we construct the optimal matching on the infinite tree. This yields a rigorous proof of the zeta (2) limit and of the conjectured limit distribution od edge-costs and their rank-orders in the optimal matching. It also yields the asymptotic essential uniqueness property: every almost-optimal matching coincides with the optimal matching except on a small proportion of edges. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:381 / 418
页数:38
相关论文
共 36 条
[1]   ASYMPTOTICS IN THE RANDOM ASSIGNMENT PROBLEM [J].
ALDOUS, D .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (04) :507-534
[2]  
Aldous D., 1990, RANDOM STRUCT ALGOR, DOI [10.1002/rsa.3240010402, DOI 10.1002/RSA.3240010402]
[3]   The percolation process on a tree where infinite clusters are frozen [J].
Aldous, DJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2000, 128 :465-477
[4]  
ALM SE, 1999, EXACT EXPECTATIONS D
[5]  
[Anonymous], P 22 IEEE ANN S FDN
[6]  
[Anonymous], P CAMB PHILO SOC, DOI DOI 10.1017/S0305004100034095
[7]  
BUCK MW, 2000, ARXIVMATHCO0004175
[8]  
Coppersmith D, 1999, RANDOM STRUCT ALGOR, V15, P113, DOI 10.1002/(SICI)1098-2418(199909)15:2<113::AID-RSA1>3.0.CO
[9]  
2-S
[10]   Exact solution of the random bipartite matching model [J].
Dotsenko, VS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (10) :2015-2030