Refinement of homology-based protein structures by molecular dynamics simulation techniques

被引:148
作者
Fan, H [1 ]
Mark, AE [1 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Dept Biophys Chem, NL-9747 AG Groningen, Netherlands
关键词
protein structure prediction; homology modeling; molecular dynamics; structure refinement;
D O I
10.1110/ps.03381404
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to assess the efficiency of the ROSETTA method for ab initio protein structure prediction. For each protein, four models generated using the ROSETTA procedure were simulated for periods of between 5 and 400 nsec in explicit solvent, under identical conditions. In addition, the experimentally determined structure and the experimentally derived structure in which the side chains of all residues had been deleted and then regenerated using the WHATIF program were simulated and used as controls. A significant improvement in the deviation of the model structures from the experimentally determined structures was observed in several cases. In addition, it was found that in certain cases in which the experimental structure deviated rapidly from the initial structure in the simulations, indicating internal strain, the structures were more stable after regenerating the side-chain positions. Overall, the results indicate that molecular dynamics simulations on a tens to hundreds of nanoseconds time scale are useful for the refinement of homology or ab initio models of small to medium-size proteins.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 46 条
[1]   Do aligned sequences share the same fold? [J].
Abagyan, RA ;
Batalov, S .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 273 (01) :355-368
[2]   Protein structure prediction and structural genomics [J].
Baker, D ;
Sali, A .
SCIENCE, 2001, 294 (5540) :93-96
[3]  
Berendsen H. J. C., 1981, Intermolecular Forces, P331, DOI [10.1007/978-94-015-7658, DOI 10.1007/978-94-015-7658]
[4]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   NMR SOLUTION STRUCTURE OF A DSRNA BINDING DOMAIN FROM DROSOPHILA STAUFEN PROTEIN REVEALS HOMOLOGY TO THE N-TERMINAL DOMAIN OF RIBOSOMAL-PROTEIN S5 [J].
BYCROFT, M ;
GRUNERT, S ;
MURZIN, AG ;
PROCTOR, M ;
STJOHNSTON, D .
EMBO JOURNAL, 1995, 14 (14) :3563-3571
[7]   The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold [J].
Bycroft, M ;
Hubbard, TJP ;
Proctor, M ;
Freund, SMV ;
Murzin, AG .
CELL, 1997, 88 (02) :235-242
[8]   Solution structure of the I gamma subdomain of the Mu end DNA-binding domain of phage Mu transposase [J].
Clubb, RT ;
Schumacher, S ;
Mizuuchi, K ;
Gronenborn, AM ;
Clore, GM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 273 (01) :19-25
[9]   From Levinthal to pathways to funnels [J].
Dill, KA ;
Chan, HS .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (01) :10-19
[10]   NMR structure and mutagenesis of the FADD (Mort1) death-effector domain [J].
Eberstadt, M ;
Huang, BH ;
Chen, ZH ;
Meadows, RP ;
Ng, SC ;
Zheng, LX ;
Lenardo, MJ ;
Fesik, SW .
NATURE, 1998, 392 (6679) :941-945