DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release

被引:125
作者
Chen, Xiao-Wei [2 ,3 ]
Feng, Ya-Qin [1 ]
Hao, Chan-Juan [1 ]
Guo, Xiao-Li [1 ]
He, Xin [1 ]
Zhou, Zhi-Yong [1 ]
Guo, Ning [2 ,3 ]
Huang, Hong-Ping [2 ,3 ]
Xiong, Wei [2 ,3 ]
Zheng, Hui [2 ,3 ]
Zuo, Pan-Li [2 ,3 ]
Zhang, Claire Xi [2 ,3 ]
Li, Wei [1 ]
Zhou, Zhuan [2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, Key Lab Mol & Dev Biol, Beijing 100101, Peoples R China
[2] Peking Univ, Inst Mol Med, Beijing 100871, Peoples R China
[3] Peking Univ, State Key Lab Biomembrane Engn, Beijing 100871, Peoples R China
关键词
D O I
10.1083/jcb.200711021
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Schizophrenia is one of the most debilitating neuropsychiatric disorders, affecting 0.5-1.0% of the population worldwide. Its pathology, attributed to defects in synaptic transmission, remains elusive. The dystrobrevin-binding protein 1 (DTNBP1) gene, which encodes a coiled-coil protein, dysbindin, is a major susceptibility gene for schizophrenia. Our previous results have demonstrated that the sandy (sdy) mouse harbors a spontaneously occurring deletion in the DTNBP1 gene and expresses no dysbindin protein (Li, W., Q. Zhang, N. Oiso, E. K. Novak, R. Gautam, E. P. O'Brien, C. L. Tinsley, D. J. Blake, R. A. Spritz, N. G. Copeland, et al. 2003. Nat. Genet. 35: 84-89). Here, using amperometry, whole-cell patch clamping, and electron microscopy techniques, we discovered specific defects in neurosecretion and vesicular morphology in neuroendocrine cells and hippocampal synapses at the single vesicle level in sdy mice. These defects include larger vesicle size, slower quantal vesicle release, lower release probability, and smaller total population of the readily releasable vesicle pool. These findings suggest that dysbindin functions to regulate exocytosis and vesicle biogenesis in endocrine cells and neurons. Our work also suggests a possible mechanism in the pathogenesis of schizophrenia at the synaptic level.
引用
收藏
页码:791 / 801
页数:11
相关论文
共 68 条
[1]   The exocytotic event in chromaffin cells revealed by patch amperometry [J].
Albillos, A ;
Dernick, G ;
Horstmann, H ;
Almers, W ;
deToledo, GA ;
Lindau, M .
NATURE, 1997, 389 (6650) :509-512
[2]   3 TYPES OF CA2+ CHANNEL TRIGGER SECRETION WITH DIFFERENT EFFICACIES IN CHROMAFFIN CELLS [J].
ARTALEJO, CR ;
ADAMS, ME ;
FOX, AP .
NATURE, 1994, 367 (6458) :72-76
[3]   CALCIUM REQUIREMENTS FOR SECRETION IN BOVINE CHROMAFFIN CELLS [J].
AUGUSTINE, GJ ;
NEHER, E .
JOURNAL OF PHYSIOLOGY-LONDON, 1992, 450 :247-271
[4]   An adrenal slice preparation for the study of chromaffin cells and their cholinergic innervation [J].
Barbara, JG ;
Poncer, JC ;
McKinney, RA ;
Takeda, K .
JOURNAL OF NEUROSCIENCE METHODS, 1998, 80 (02) :181-189
[5]   Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain [J].
Benson, MA ;
Newey, SE ;
Martin-Rendon, E ;
Hawkes, R ;
Blake, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :24232-24241
[6]   Protein sorting in the synaptic vesicle life cycle [J].
Bonanomi, Dario ;
Benfenati, Fabio ;
Valtorta, Flavia .
PROGRESS IN NEUROBIOLOGY, 2006, 80 (04) :177-217
[7]   Quantal release of serotonin [J].
Bruns, D ;
Riedel, D ;
Klingauf, J ;
Jahn, R .
NEURON, 2000, 28 (01) :205-220
[8]   Splitting the quantum: regulation of quantal release during vesicle fusion [J].
Burgoyne, RD ;
Barclay, JW .
TRENDS IN NEUROSCIENCES, 2002, 25 (04) :176-178
[9]   Control of membrane fusion dynamics during regulated exocytosis [J].
Burgoyne, RD ;
Fisher, RJ ;
Graham, ME ;
Haynes, LP ;
Morgan, A .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2001, 29 :467-472
[10]   Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells [J].
Buxton, P ;
Zhang, XM ;
Walsh, B ;
Sriratana, A ;
Schenberg, I ;
Manickam, E ;
Rowe, T .
BIOCHEMICAL JOURNAL, 2003, 375 :433-440