Regulation of Autophagy by Neuropathological Protein TDP-43

被引:127
作者
Bose, Jayarama Krishnan [1 ]
Huang, Chi-Chen [1 ]
Shen, C. -K. James [1 ]
机构
[1] Acad Sinica, Inst Mol Biol, Taipei 11529, Taiwan
关键词
AMYOTROPHIC-LATERAL-SCLEROSIS; FRONTOTEMPORAL LOBAR DEGENERATION; UBIQUITIN-PROTEASOME SYSTEM; BINDING PROTEIN; NEURODEGENERATIVE DISEASE; IN-VIVO; FTLD-U; DEGRADATION; DEPLETION; MICE;
D O I
10.1074/jbc.M111.237115
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
TDP-43 is a DNA/RNA-binding protein with multicellular functions. As a pathosignature protein of a range of neurodegenerative diseases, TDP-43 is also the major component of the polyubiquitinated inclusions in the pathological cellular samples of these diseases. In normal cells, TDP-43 is processed and degraded by both autophagy and the ubiquitin-proteasome systems. We have found, by microarray hybridization and RT-PCR analyses, that the level of the mRNA encoding the major autophagy component Atg7 is decreased upon depletion of TDP-43 by RNAi knockdown. This decrease of the Atg7 mRNA level could be rescued by overexpression of an siRNA-resistant form of TDP-43, and it appears to be the result of destabilization of the Atg7 mRNA, to which TDP-43 could bind through its RNA recognition motif 1 domain. Furthermore, depletion of TDP-43 with the consequent loss of the Atg7 mRNA/ATG7 protein causes impairment of the autophagy and facilitates the accumulation of polyubiquitinated proteins as well as the autophagy/ubiquitin-proteasome system substrate p62 in the cells. These data demonstrate the function of TDP-43 as a maintenance factor of the autophagy system, and they suggest the existence of a feedback regulatory loop between TDP-43 and autophagy. A scenario in which loss of function of TDP-43 contributes to the development of TDP-43 proteinopathies is presented.
引用
收藏
页码:44441 / 44448
页数:8
相关论文
共 54 条
[1]   TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis [J].
Arai, Tetsuaki ;
Hasegawa, Masato ;
Akiyama, Haruhiko ;
Ikeda, Kenji ;
Nonaka, Takashi ;
Mori, Hiroshi ;
Mann, David ;
Tsuchiya, Kuniaki ;
Yoshida, Marl ;
Hashizume, Yoshio ;
Oda, Tatsuro .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 351 (03) :602-611
[2]   Human, Drosophila, and C-elegans TDP43:: Nucleic acid binding properties and splicing regulatory function [J].
Ayala, YM ;
Pantano, S ;
D'Ambrogio, A ;
Buratti, E ;
Brindisi, A ;
Marchetti, C ;
Romano, M ;
Baralle, FE .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 348 (03) :575-588
[3]   TDP-43 regulates its mRNA levels through a negative feedback loop [J].
Ayala, Youhna M. ;
De Conti, Laura ;
Avendano-Vazquez, S. Erendira ;
Dhir, Ashish ;
Romano, Maurizio ;
D'Ambrogio, Andrea ;
Tollervey, James ;
Ule, Jernej ;
Baralle, Marco ;
Buratti, Emanuele ;
Baralle, Francisco E. .
EMBO JOURNAL, 2011, 30 (02) :277-288
[4]   AU-rich elements and associated factors: are there unifying principles? [J].
Barreau, C ;
Paillard, L ;
Osborne, HB .
NUCLEIC ACIDS RESEARCH, 2005, 33 (22) :7138-7150
[5]   TDP-43 Overexpression Enhances Exon 7 Inclusion during the Survival of Motor Neuron Pre-mRNA Splicing [J].
Bose, Jayarama Krishnan ;
Wang, I. -Fan ;
Hung, Li ;
Tarn, Woan-Yuh ;
Shen, C. -K. James .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (43) :28852-28859
[6]   Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping [J].
Buratti, E ;
Dörk, T ;
Zuccato, E ;
Pagani, F ;
Romano, M ;
Baralle, FE .
EMBO JOURNAL, 2001, 20 (07) :1774-1784
[7]   The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation [J].
Buratti, Emanuele ;
Baralle, Francisco E. .
RNA BIOLOGY, 2010, 7 (04) :420-429
[8]   The Molecular Links Between TDP-43 Dysfunction and Neurodegeneration [J].
Buratti, Emanuele ;
Baralle, Francisco E. .
ADVANCES IN GENETICS, VOL 66, 2009, 66 :1-34
[9]   Rapamycin Rescues TDP-43 Mislocalization and the Associated Low Molecular Mass Neurofilament Instability [J].
Caccamo, Antonella ;
Majumder, Smita ;
Deng, Janice J. ;
Bai, Yidong ;
Thornton, Fiona B. ;
Oddo, Salvatore .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (40) :27416-27424
[10]   NEUROBLASTOMA X SPINAL-CORD (NSC) HYBRID CELL-LINES RESEMBLE DEVELOPING MOTOR NEURONS [J].
CASHMAN, NR ;
DURHAM, HD ;
BLUSZTAJAN, JK ;
ODA, K ;
TABIRA, T ;
SHAW, IT ;
DAHROUGE, S ;
ANTEL, JP .
DEVELOPMENTAL DYNAMICS, 1992, 194 (03) :209-221