On the influence of feature reduction for the classification of hyperspectral images based on the extended morphological profile

被引:38
作者
Castaings, Thibaut [1 ,2 ]
Waske, Bjoern [3 ]
Benediktsson, Jon Atli [1 ]
Chanussot, Jocelyn [2 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
[2] Grenoble Inst Technol, GIPSA Lab, F-38402 St Martin Dheres, France
[3] Univ Bonn, Inst Geodesy & Geoinformat, Fac Agr, D-53115 Bonn, Germany
关键词
SUPPORT VECTOR MACHINES; FEATURE-EXTRACTION; FRAMEWORK; SVMS;
D O I
10.1080/01431161.2010.512313
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this study we investigated the classification of hyperspectral data with high spatial resolution. Previously, methods that generate a so-called extended morphological profile (EMP) from the principal components of an image have been proposed to create base images for morphological transformations. However, it can be assumed that the feature reduction (FR) may have a significant effect on the accuracy of the classification of the EMP. We therefore investigated the effect of different FR methods on the generation and classification of the EMP of hyperspectral images from urban areas, using a machine learning-based algorithm for classification. The applied FR methods include: principal component analysis (PCA), nonparametric weighted feature extraction (NWFE), decision boundary feature extraction (DBFE), Gaussian kernel PCA (KPCA) and Bhattacharyya distance feature selection (BDFS). Experiments were run with two classification algorithms: the support vector machine (SVM) and random forest (RF) algorithms. We demonstrate that the commonly used PCA approach seems to be nonoptimal in a large number of cases in terms of classification accuracy, and the other FR methods may be more suitable as preprocessing approaches for the EMP.
引用
收藏
页码:5921 / 5939
页数:19
相关论文
共 38 条
[1]   Automatic detection of geospatial objects using multiple hierarchical segmentations [J].
Akcay, H. Goekhan ;
Aksoy, Selim .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (07) :2097-2111
[2]  
[Anonymous], 1967, Elements pour une theorie des milieux poreux
[3]  
[Anonymous], 1988, Image analysis and mathematical morphology
[4]   Improved Classification of VHR Images of Urban Areas Using Directional Morphological Profiles [J].
Bellens, Rik ;
Gautama, Sidharta ;
Martinez-Fonte, Leyden ;
Philips, Wilfried ;
Chan, Jonathan Cheung-Wai ;
Canters, Frank .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (10) :2803-2813
[5]   Classification and feature extraction for remote sensing images from urban areas based on morphological transformations [J].
Benediktsson, JA ;
Pesaresi, M ;
Arnason, K .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :1940-1949
[6]  
BENEDIKTSSON JA, 2005, IEEE T GEOSCI REMOTE, V43, P309
[7]  
Bernard S, 2009, LECT NOTES COMPUT SC, V5519, P171, DOI 10.1007/978-3-642-02326-2_18
[8]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples [J].
Bruzzone, Lorenzo ;
Persello, Claudio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (07) :2142-2154