High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing

被引:166
作者
Park, YS
Choi, YC
Kim, KS
Chung, DC
Bae, DJ
An, KH
Lim, SC
Zhu, XY
Lee, YH [1 ]
机构
[1] Jeonbuk Natl Univ, Dept Semicond Sci & Technol, Jeonju 561756, South Korea
[2] Jeonbuk Natl Univ, Semicond Phys Res Ctr, Jeonju 561756, South Korea
[3] Jeonbuk Natl Univ, Dept Phys, Jeonju 561756, South Korea
[4] Woosuk Univ, Dept Informat Commun & Comp Engn, Wanju 565701, South Korea
关键词
carbon nanotubes; annealing; SEM; activation energy;
D O I
10.1016/S0008-6223(00)00152-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiwalled carbon nanotubes were synthesized by electric are discharge method in helium ambient with the pressure of 400 Torr and then purified by thermal annealing. During the annealing in air, the quartz tube in which the raw samples were placed was rotated in order to expose evenly the nanotubes and the carbonaceous particles to the air. The carbonaceous particles were presumably etched away by the selective oxidation with faster etching rate than nanotubes. This gives rise to very high yield of about 40%. It was found from Raman scattering measurements that the ratio of the intensity of G-line peak (1583 cm(-1)) to that of D-line peak (1285 cm(-1)) increased drastically by this purification process. Our density functional tight-binding calculations clearly show that the desorption energy barrier of a C-O pair from the nanotube edge is 2.48 eV, higher than 0.3 similar to2.1 eV from an amorphous carbon, confirming the current approach of purification by the selective oxidation. (C) 2001 Published by Elsevier Science Ltd.
引用
收藏
页码:655 / 661
页数:7
相关论文
共 28 条
[1]   PREPARATION OF CARBON NANOTUBES BY ARC-DISCHARGE EVAPORATION [J].
ANDO, Y ;
IIJIMA, S .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1993, 32 (1A-B) :L107-L109
[2]   GROWTH AND SINTERING OF FULLERENE NANOTUBES [J].
COLBERT, DT ;
ZHANG, J ;
MCCLURE, SM ;
NIKOLAEV, P ;
CHEN, Z ;
HAFNER, JH ;
OWENS, DW ;
KOTULA, PG ;
CARTER, CB ;
WEAVER, JH ;
RINZLER, AG ;
SMALLEY, RE .
SCIENCE, 1994, 266 (5188) :1218-1222
[3]   Unique characteristics of cold cathode carbon-nanotube-matrix field emitters [J].
Collins, PG ;
Zettl, A .
PHYSICAL REVIEW B, 1997, 55 (15) :9391-9399
[4]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[5]   LARGE-SCALE SYNTHESIS OF CARBON NANOTUBES [J].
EBBESEN, TW ;
AJAYAN, PM .
NATURE, 1992, 358 (6383) :220-222
[6]  
EBBESEN TW, 1997, CARBON NANOTUBES PRE, P155
[7]   VIBRATIONAL-MODES OF CARBON NANOTUBES - SPECTROSCOPY AND THEORY [J].
EKLUND, PC ;
HOLDEN, JM ;
JISHI, RA .
CARBON, 1995, 33 (07) :959-972
[8]   Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J].
Elstner, M ;
Porezag, D ;
Jungnickel, G ;
Elsner, J ;
Haugk, M ;
Frauenheim, T ;
Suhai, S ;
Seifert, G .
PHYSICAL REVIEW B, 1998, 58 (11) :7260-7268
[9]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[10]   NEW ONE-DIMENSIONAL CONDUCTORS - GRAPHITIC MICROTUBULES [J].
HAMADA, N ;
SAWADA, S ;
OSHIYAMA, A .
PHYSICAL REVIEW LETTERS, 1992, 68 (10) :1579-1581