Advantages and limitations of current network inference methods

被引:350
作者
De Smet, Riet [1 ]
Marchal, Kathleen [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Microbial & Plant Genet Bioinformat, Dept Microbial & Mol Syst, B-3001 Leuven, Belgium
关键词
GENE-EXPRESSION DATA; ESCHERICHIA-COLI K-12; REGULATORY NETWORK; DATA INTEGRATION; SYSTEMS-BIOLOGY; TRANSCRIPTIONAL REGULATION; BACILLUS-SUBTILIS; MODULE NETWORKS; GENOMIC DATA; CHIP-CHIP;
D O I
10.1038/nrmicro2419
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Network inference, which is the reconstruction of biological networks from high-throughput data, can provide valuable information about the regulation of gene expression in cells. However, it is an underdetermined problem, as the number of interactions that can be inferred exceeds the number of independent measurements. Different state-of-the-art tools for network inference use specific assumptions and simplifications to deal with underdetermination, and these influence the inferences. The outcome of network inference therefore varies between tools and can be highly complementary. Here we categorize the available tools according to the strategies that they use to deal with the problem of underdetermination. Such categorization allows an insight into why a certain tool is more appropriate for the specific research question or data set at hand.
引用
收藏
页码:717 / 729
页数:13
相关论文
共 116 条
[1]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[2]   Computational analysis of the synergy among multiple interacting genes [J].
Anastassiou, Dimitris .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[3]   Evolution of transcription factors and the gene regulatory network in Escherichia coli [J].
Babu, MM ;
Teichmann, SA .
NUCLEIC ACIDS RESEARCH, 2003, 31 (04) :1234-1244
[4]   How to infer gene networks from expression profiles [J].
Bansal, Mukesh ;
Belcastro, Vincenzo ;
Ambesi-Impiombato, Alberto ;
di Bernardo, Diego .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[5]   Computational discovery of gene modules and regulatory networks [J].
Bar-Joseph, Z ;
Gerber, GK ;
Lee, TI ;
Rinaldi, NJ ;
Yoo, JY ;
Robert, F ;
Gordon, DB ;
Fraenkel, E ;
Jaakkola, TS ;
Young, RA ;
Gifford, DK .
NATURE BIOTECHNOLOGY, 2003, 21 (11) :1337-1342
[6]   Systems biology as a foundation for genome-scale synthetic biology [J].
Barrett, Christian L. ;
Kim, Tae Yong ;
Kim, Hyun Uk ;
Palsson, Bernhard O. ;
Lee, Sang Yup .
CURRENT OPINION IN BIOTECHNOLOGY, 2006, 17 (05) :488-492
[7]   Genome evolution and adaptation in a long-term experiment with Escherichia coli [J].
Barrick, Jeffrey E. ;
Yu, Dong Su ;
Yoon, Sung Ho ;
Jeong, Haeyoung ;
Oh, Tae Kwang ;
Schneider, Dominique ;
Lenski, Richard E. ;
Kim, Jihyun F. .
NATURE, 2009, 461 (7268) :1243-U74
[8]   Reverse engineering of regulatory networks in human B cells [J].
Basso, K ;
Margolin, AA ;
Stolovitzky, G ;
Klein, U ;
Dalla-Favera, R ;
Califano, A .
NATURE GENETICS, 2005, 37 (04) :382-390
[9]   Discovering local structure in gene expression data: The order-preserving submatrix problem [J].
Ben-Dor, A ;
Chor, B ;
Karp, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (3-4) :373-384
[10]   Learning biological networks: from modules to dynamics [J].
Bonneau, Richard .
NATURE CHEMICAL BIOLOGY, 2008, 4 (11) :658-664