Cytochrome c, released from cerebellar granule cells undergoing apoptosis or excytotoxic death, can generate protonmotive force and drive ATP synthesis in isolated mitochondria

被引:46
作者
Atlante, A
de Bari, L
Bobba, A
Marra, E
Calissano, P
Passarella, S
机构
[1] CNR, Ist Biomembrane & Bioenerget, I-70126 Bari, Italy
[2] CNR, Ist Neurobiol & Med Mol, Rome, Italy
[3] Univ Molise, Dipartimento Sci Anim Vegetali & Ambiente, Campobasso, Italy
关键词
apoptosis; ATP; cerebellar granule cells; cytochrome c release; mitochondria; necrosis;
D O I
10.1046/j.1471-4159.2003.01863.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In rat cerebellar granule cells, cytochrome c release takes place during glutamate toxicity and apoptosis due to deprivation of depolarising levels of potassium. We show that, as in necrosis, the released cytochrome c present in the cytosolic fraction obtained from cerebellar granule cells undergoing apoptosis can operate as a reactive oxygen species (ROS) scavenger and as a respiratory substrate. The capability of the cytosolic fraction containing cytochrome c , obtained from cerebellar granule cells undergoing either necrosis or apoptosis, to energise coupled mitochondria isolated by the same cells is also investigated. We show that, in both cases, the cytosolic fraction containing cytochrome c, added to mitochondria, can cause proton ejection, and membrane potential generation and can drive ATP synthesis and export in the extramitochondrial phase, as photometrically measured via the ATP detecting system. Cytochrome c, separated immunologically from the cytosolic fraction of apoptotic cells when added to mitochondria, is found to cause proton ejection to generate membrane potential and to drive ATP synthesis and export in a manner not sensitive to the further addition of the cytosolic fraction depleted of cytochrome c, which failed to do this. In the light of these findings we propose that in apoptosis the released cytochrome c can contribute to provide ATP required for the cell programmed death to occur.
引用
收藏
页码:591 / 604
页数:14
相关论文
共 78 条
[1]   Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2 [J].
Adrain, C ;
Creagh, EM ;
Martin, SJ .
EMBO JOURNAL, 2001, 20 (23) :6627-6636
[2]   BYPASSES OF THE ANTIMYCIN A BLOCK OF MITOCHONDRIAL ELECTRON-TRANSPORT IN RELATION TO UBISEMIQUINONE FUNCTION [J].
ALEXANDRE, A ;
LEHNINGER, AL .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 767 (01) :120-129
[3]   A rapid method for the isolation of metabolically active mitochondria from rat neurons and astrocytes in primary culture [J].
Almeida, A ;
Medina, JM .
BRAIN RESEARCH PROTOCOLS, 1998, 2 (03) :209-214
[4]   GLUTAMATE-INDUCED NEURONAL DEATH - A SUCCESSION OF NECROSIS OR APOPTOSIS DEPENDING ON MITOCHONDRIAL-FUNCTION [J].
ANKARCRONA, M ;
DYPBUKT, JM ;
BONFOCO, E ;
ZHIVOTOVSKY, B ;
ORRENIUS, S ;
LIPTON, SA ;
NICOTERA, P .
NEURON, 1995, 15 (04) :961-973
[5]  
ARDAIL D, 1990, J BIOL CHEM, V265, P18797
[6]   Glutamate neurotoxicity in rat cerebellar granule cells: A major role for xanthine oxidase in oxygen radical formation [J].
Atlante, A ;
Gagliardi, S ;
Minervini, GM ;
Ciotti, MT ;
Marra, E ;
Calissano, P .
JOURNAL OF NEUROCHEMISTRY, 1997, 68 (05) :2038-2045
[7]   The apoptosis/necrosis transition in cerebellar granule cells depends on the mutual relationship of the antioxidant and the proteolytic systems which regulate ROS production and cytochrome c release en route to death [J].
Atlante, A ;
Bobba, A ;
Calissano, P ;
Passarella, S ;
Marra, E .
JOURNAL OF NEUROCHEMISTRY, 2003, 84 (05) :960-971
[8]   Neuronal apoptosis in rats is accompanied by rapid impairment of cellular respiration and is prevented by scavengers of reactive oxygen species [J].
Atlante, A ;
Gagliardi, S ;
Marra, E ;
Calissano, P .
NEUROSCIENCE LETTERS, 1998, 245 (03) :127-130
[9]   Rapid uncoupling of oxidative phosphorylation accompanies glutamate toxicity in rat cerebellar granule cells [J].
Atlante, A ;
Gagliardi, S ;
Minervini, GM ;
Marra, E ;
Passarella, S ;
Calissano, P .
NEUROREPORT, 1996, 7 (15-17) :2519-2523
[10]   Glutamate neurotoxicity, oxidative stress and mitochondria [J].
Atlante, A ;
Calissano, P ;
Bobba, A ;
Giannattasio, S ;
Marra, E ;
Passarella, S .
FEBS LETTERS, 2001, 497 (01) :1-5