Source analysis of interictal spikes in polymicrogyria:: Loss of relevant cortical fissures requires simultaneous EEG to avoid MEG misinterpretation

被引:33
作者
Bast, T
Ramantani, G
Boppel, T
Metzke, T
Özkan, Ö
Stippich, C
Seitz, A
Rupp, A
Rating, D
Scherg, M
机构
[1] Univ Hosp, Dept Pediat Neurol, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Dept Neuroradiol, Heidelberg, Germany
[3] Heidelberg Univ, Dept Neurol, Heidelberg, Germany
关键词
MEG; EEG; polymicrogyria; interictal spikes; source analysis;
D O I
10.1016/j.neuroimage.2004.12.059
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Purpose: Multiple source analysis of interictal EEG and MEG spikes was used to identify irritative zones in polymicrogyria (PMG). Spike onset times and source localization were compared between both modalities. PMG is characterized by a marked loss of deep cortical fissures. Hence, differences between EEG and MEG were expected since MEG signals are predominantly generated from tangentially orientated neurons in fissures. Patients: We studied 7 children and young adults (age 7.5 to 19 years) with localization-related epilepsy and unilateral polymicrogyria (PMG) as defined from anatomical MRI. Methods: 122-channel whole-head MEG and 32-channel EEG were recorded simultaneously for 25 to 40 min. Using the BESA program, interictal spikes were identified visually and used as templates to search for similar spatio-temporal spike patterns throughout the recording. Detected similar spikes (r > 0.85) were averaged, high-pass filtered (5 Hz) to enhance spike onset, and subjected to multiple spatio-temporal source analysis. Source localization was visualized by superposition on T1-weighted MRI and compared to the lesion. Results: Nine spike types were identified in seven patients (2 types in 2 patients). Eight out of nine EEG sources and seven MEG sources modeling spike onset were localized within the visible lesion. EEG spike onset preceded MEG significantly in two spike types by 19 and 25 ms. This was related to radial onset activity in EEG while MEG localized propagated activity. In one case, the earliest MEG spike activity was localized to the normal hemisphere while the preceding radial EEG onset activity was localized within the lesion. Distances between EEG and MEG onset sources varied markedly between 9 and 51 min in the eight spike types wit It concordant lateralization. Conclusion: Interictal irritative zones were localized within the lesion in PMG comparable to other malformations, e.g., FCD. Discrepancies in MEG and EEG were related to the lack of deep Fissures in PMG. In two cases, MEG was blind to the onset of radial interictal spike activity and localized propagated spike activity. In two other cases, MEG localized to the more peripheral parts of theirritative zone. Simultaneous EEG recordings with MEG and multiple source analysis are required to avoid problems of MEG interpretation. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1232 / 1241
页数:10
相关论文
共 37 条
[1]  
Andermann F, 2000, ADV NEUROL, V84, P479
[2]  
[Anonymous], 1996, Dysplasias of the cerebral cortex and epilepsy
[3]   Focal cortical dysplasia and intractable epilepsy in adults:: clinical, EEG, imaging, and surgical features [J].
Bautista, JF ;
Foldvary-Schaefer, N ;
Bingaman, WE ;
Lüders, HO .
EPILEPSY RESEARCH, 2003, 55 (1-2) :131-136
[4]   Epileptogenicity of focal malformations due to abnormal cortical development:: Direct electrocorticographic histopathologic correlations [J].
Boonyapisit, K ;
Najm, I ;
Klem, G ;
Ying, Z ;
Burrier, C ;
LaPresto, E ;
Nair, D ;
Bingaman, T ;
Prayson, T ;
Lüders, H .
EPILEPSIA, 2003, 44 (01) :69-76
[5]   Magnetoencephalography/magnetic source imaging in the assessment of patients with epilepsy [J].
Ebersole, JS .
EPILEPSIA, 1997, 38 :S1-S5
[6]   Ictal magnetic source imaging as a localizing tool in partial epilepsy [J].
Eliashiv, DS ;
Elsas, SM ;
Squires, K ;
Fried, I ;
Engel, J .
NEUROLOGY, 2002, 59 (10) :1600-1610
[7]  
Francione S, 2003, EPILEPTIC DISORD, V5, pS105
[8]   Intact functional inhibition in the surround of experimentally induced focal cortical dysplasias in rats [J].
Hagemann, G ;
Redecker, C ;
Witte, OW .
JOURNAL OF NEUROPHYSIOLOGY, 2000, 84 (01) :600-603
[9]   Localization of ictal and interictal bursting epileptogenic activity in focal cortical dysplasia: Agreement of magnetoencephalography and electrocorticography [J].
Ishibashi, H ;
Simos, PG ;
Wheless, JW ;
Baumgartner, JE ;
Kim, HL ;
Castillo, EM ;
Davis, RN ;
Papanicolaou, AC .
NEUROLOGICAL RESEARCH, 2002, 24 (06) :525-530
[10]   Focal epileptogenesis in a rat model of polymicrogyria [J].
Jacobs, KM ;
Hwang, BJ ;
Prince, DA .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 81 (01) :159-173