Analysis of dynamic light scattering signals with discrete wavelet transformation

被引:16
作者
Kroon, M
Wegdam, GH
Sprik, R
机构
[1] Van der Waals-Zeeman Instituut, Universiteit van Amsterdam, 1018 XE Amsterdam
来源
EUROPHYSICS LETTERS | 1996年 / 35卷 / 08期
关键词
D O I
10.1209/epl/i1996-00161-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The analysis of non-stationary signals calls for specific tools which go beyond classical Fourier analysis. Here we present the discrete wavelet transform as a quantitative method to analyse the scaling properties of non-stationary and chaotic signals obtained by light scattering. The analysis is performed directly on the time-resolved scattered intensity. The result is the scaling exponent of the underlying power spectrum and the frequency window where the scaling can be observed. These properties are obtained with a higher accuracy and in a fraction of the time compared with the classical method of intensity correlation functions. As a test we applied the new method to the sol-gel transition of a suspension of disc-shaped colloidal particles in water.
引用
收藏
页码:621 / 626
页数:6
相关论文
共 14 条
[1]   WAVELET ANALYSIS OF TURBULENCE REVEALS THE MULTIFRACTAL NATURE OF THE RICHARDSON CASCADE [J].
ARGOUL, F ;
ARNEODO, A ;
GRASSEAU, G ;
GAGNE, Y ;
HOPFINGER, EJ ;
FRISCH, U .
NATURE, 1989, 338 (6210) :51-53
[2]   WAVELET TRANSFORM OF MULTIFRACTALS [J].
ARNEODO, A ;
GRASSEAU, G ;
HOLSCHNEIDER, M .
PHYSICAL REVIEW LETTERS, 1988, 61 (20) :2281-2284
[3]   DYNAMIC LIGHT-SCATTERING STUDY OF CONCENTRATED MICROGEL SOLUTIONS AS MESOSCOPIC MODEL OF THE GLASS-TRANSITION IN QUASI-ATOMIC FLUIDS [J].
BARTSCH, E ;
ANTONIETTI, M ;
SCHUPP, W ;
SILLESCU, H .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (06) :3950-3963
[4]  
Bracewell R. N., 1986, FOURIER TRANSFORM IT, V31999
[5]  
DAUBECHIES I, 1989, WAVELETS TIME FREQUE
[6]   CYCLE-OCTAVE AND RELATED TRANSFORMS IN SEISMIC SIGNAL ANALYSIS [J].
GOUPILLAUD, P ;
GROSSMANN, A ;
MORLET, J .
GEOEXPLORATION, 1984, 23 (01) :85-102
[7]   DYNAMIC LIGHT-SCATTERING BY NONERGODIC MEDIA - BROWNIAN PARTICLES TRAPPED IN POLYACRYLAMIDE GELS [J].
JOOSTEN, JGH ;
GELADE, ETF ;
PUSEY, PN .
PHYSICAL REVIEW A, 1990, 42 (04) :2161-2173
[8]  
Kaiser G., 1994, A Friendly Guide to Wavelets
[9]   FRACTAL ESTIMATION FROM NOISY DATA VIA DISCRETE FRACTIONAL GAUSSIAN-NOISE (DFGN) AND THE HAAR BASIS [J].
KAPLAN, LM ;
KUO, CCJ .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3554-3562
[10]  
KROON M, UNPUB PHYS REV E