SNF1/AMPK pathways in yeast

被引:427
作者
Hedbacker, Kristina
Carlson, Marian [1 ,2 ]
机构
[1] Columbia Univ, Dept Genet & Dev, New York, NY 10032 USA
[2] Columbia Univ, Dept Microbiol, New York, NY 10032 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2008年 / 13卷
关键词
SNF1 protein kinase; metabolic control; stress responses; yeast; AMPK; glucose; review;
D O I
10.2741/2854
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SNF1/AMPK family of protein kinases is highly conserved in eukaryotes and is required for energy homeostasis in mammals, plants, and fungi. SNF1 protein kinase was initially identified by genetic analysis in the budding yeast Saccharomyces cerevisiae. SNF1 is required primarily for the adaptation of yeast cells to glucose limitation and for growth on carbon sources that are less preferred than glucose, but is also involved in responses to other environmental stresses. SNF1 regulates transcription of a large set of genes, modifies the activity of metabolic enzymes, and controls various nutrient-responsive cellular developmental processes. Like AMPK, SNF1 protein kinase is heterotrimeric. It is phosphorylated and activated by the upstream kinases Sak1, Tos3, and Elm1 and is inactivated by the Reg1-Glc7 protein phosphatase 1. Further regulation of SNF1 is achieved through autoinhibition and through control of its subcellular localization. Here we review the current understanding of SNF1 protein kinase pathways in Saccharomyces cerevisiae and other yeasts.
引用
收藏
页码:2408 / 2420
页数:13
相关论文
共 126 条
[1]   Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site [J].
Adams, J ;
Chen, ZP ;
Van Denderen, BJW ;
Morton, CJ ;
Parker, MW ;
Witters, LA ;
Stapleton, D ;
Kemp, BE .
PROTEIN SCIENCE, 2004, 13 (01) :155-165
[2]   Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene [J].
Alepuz, PM ;
Cunningham, KW ;
Estruch, F .
MOLECULAR MICROBIOLOGY, 1997, 26 (01) :91-98
[3]  
Ashrafi K, 2000, GENE DEV, V14, P1872
[5]   Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3 [J].
Bertram, PG ;
Choi, JH ;
Carvalho, J ;
Chan, TF ;
Ai, WD ;
Zheng, XFS .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (04) :1246-1252
[6]   REGULATION OF DIMORPHISM IN SACCHAROMYCES-CEREVISIAE - INVOLVEMENT OF THE NOVEL PROTEIN-KINASE HOMOLOG ELM1P AND PROTEIN PHOSPHATASE 2A [J].
BLACKETER, MJ ;
KOEHLER, CM ;
COATS, SG ;
MYERS, AM ;
MADAULE, P .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (09) :5567-5581
[7]  
Bouquin N, 2000, J CELL SCI, V113, P1435
[8]  
CANNON JF, 1994, GENETICS, V136, P485
[9]  
CARLING D, 1994, J BIOL CHEM, V269, P11442
[10]   Glucose repression in yeast [J].
Carlson, M .
CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (02) :202-207