Partial duality in SU(N) Yang-Mills theory

被引:123
作者
Faddeev, L
Niemi, AJ
机构
[1] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland
[2] Mittag Leffler Inst, S-18262 Djursholm, Sweden
[3] Russian Acad Sci, Steklov Math Inst, St Petersburg Branch, St Petersburg 196140, Russia
关键词
D O I
10.1016/S0370-2693(99)00100-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently we have proposed a set of variables for describing the infrared limit of four dimensional SU(2) Yang-Mills theory. Here we extend these variables to the general case of four dimensional SU(N) Yang-Mills theory. We find that the SU(N) connection A mu decomposes according to irreducible representations of SO(N - 1), and the curvature two form F-mu v is related to the symplectic Kirillov two forms that characterize irreducible representations of SU(N). We propose a general class of nonlinear chiral models that may describe stable, soliton-like configurations with nontrivial topological numbers. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:214 / 218
页数:5
相关论文
共 8 条
[1]   RESTRICTED GAUGE-THEORY [J].
CHO, YM .
PHYSICAL REVIEW D, 1980, 21 (04) :1080-1088
[2]   Stable knot-like structures in classical field theory [J].
Faddeev, L ;
Niemi, AJ .
NATURE, 1997, 387 (6628) :58-61
[3]  
FADDEEV L, HEPTH9807069
[4]  
Faddeev L. D., 1975, PRINT75QS70 IAS
[5]  
PANTALEO M, 1979, EINSTEIN SEVERAL CON, V1
[6]  
PERIWAL V, HEPTH9808127
[7]   SOME EXACT MULTIPSEUDO-PARTICLE SOLUTIONS OF CLASSICAL YANG-MILLS THEORY [J].
WITTEN, E .
PHYSICAL REVIEW LETTERS, 1977, 38 (03) :121-124
[8]  
WU TT, 1969, PROPERTIES MATTER UN