Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose

被引:76
作者
Giardina, T
Gunning, AP
Juge, N
Faulds, CB
Furniss, CSM
Svensson, B
Morris, VJ
Williamson, G
机构
[1] Inst Food Res, Nutr Hlth & Consumer Sci Div, Norwich NR4 7UA, Norfolk, England
[2] Inst Food Res, Food Mat Div, Norwich NR4 7UA, Norfolk, England
[3] Fac Sci & Tech St Jerome, Inst Mediterraneen Rech Nutr, UMR 1111, INRA, F-13397 Marseille 20, France
[4] Carlsberg Lab, Dept Chem, DK-2500 Valby, Denmark
关键词
starch-binding domain; Aspergillus niger; atomic force microscopy; glucoamylase; UV difference spectroscopy;
D O I
10.1006/jmbi.2001.5097
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The interaction of the two binding sites of the starch-binding domain (SBD) of Aspergillus niger glucoamylase 1 (GA-I) with substrate has been investigated by using atomic force microscopy (AFM) and UV difference spectroscopy in combination with site-specific mutants of both SBD and GA-I. The SBD possesses two binding sites with distinct affinities towards the soluble linear substrate maltoheptaose; dissociation constants (K-d) of 17 and 0.95 muM were obtained for W563 K (binding site 2 mutant) and W590 K (binding site I mutant), respectively, compared to an apparent K-d of 23 muM for the wild-type SBD. Further, the two sites are almost but not totally independent of each other for binding, since abolishing one site does not prevent the amylose chain binding to the other site. Using AFM, we show that the amylose chains undergo a conformational change to form loops upon binding to the SBD, using either the recombinant wild-type SBD or a catalytically inactive mutant of GA-I. This characteristic conformation of amylose is lost when one of the SBD binding sites is eliminated by site-directed mutagenesis, as seen with the mutants W563 K or W590 K. Therefore, although each binding site is capable of simple binding to a ligand, both sites must be functional in order to induce a gross conformational change of the amylose molecules. Taken together these data suggest that for the complex with soluble amylose, SBD binds to a single amylose chain, site 1 being responsible for the initial recognition of the chain and site 2 being involved in tighter binding, leading to the circularisation of the amylose chain observed by AFM. Binding of the SBD to the amylose chain results in a novel two-turn helical amylose complex structure. The binding of parallel amylosic chains to the SBD may provide a basis for understanding the role of the SBD in facilitating enzymatic degradation of crystalline starches by glucoamylase 1. (C) 2001 Academic Press.
引用
收藏
页码:1149 / 1159
页数:11
相关论文
共 51 条
[1]   HEN EGG-WHITE LYSOZYME EXPRESSED IN, AND SECRETED FROM, ASPERGILLUS-NIGER IS CORRECTLY PROCESSED AND FOLDED [J].
ARCHER, DB ;
JEENES, DJ ;
MACKENZIE, DA ;
BRIGHTWELL, G ;
LAMBERT, N ;
LOWE, G ;
RADFORD, SE ;
DOBSON, CM .
BIO-TECHNOLOGY, 1990, 8 (08) :741-745
[2]   Surface structure of native cellulose microcrystals by AFM [J].
Baker, AA ;
Helbert, W ;
Sugiyama, J ;
Miles, MJ .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 :S559-S563
[3]   New insight into cellulose structure by atomic force microscopy shows the Iα crystal phase at near-atomic resolution [J].
Baker, AA ;
Helbert, W ;
Sugiyama, J ;
Miles, MJ .
BIOPHYSICAL JOURNAL, 2000, 79 (02) :1139-1145
[4]   High-resolution atomic force microscopy of native Valonia cellulose I microcrystals [J].
Baker, AA ;
Helbert, W ;
Sugiyama, J ;
Miles, MJ .
JOURNAL OF STRUCTURAL BIOLOGY, 1997, 119 (02) :129-138
[5]   Internal structure of the starch granule revealed by AFM [J].
Baker, AA ;
Miles, MJ ;
Helbert, W .
CARBOHYDRATE RESEARCH, 2001, 330 (02) :249-256
[6]   INTERACTION OF BETA-CYCLODEXTRIN WITH THE GRANULAR STARCH BINDING DOMAIN OF GLUCOAMYLASE [J].
BELSHAW, NJ ;
WILLIAMSON, G .
BIOCHIMICA ET BIOPHYSICA ACTA, 1991, 1078 (01) :117-120
[7]   SPECIFICITY OF THE BINDING DOMAIN OF GLUCOAMYLASE-1 [J].
BELSHAW, NJ ;
WILLIAMSON, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 211 (03) :717-724
[8]   PRODUCTION AND PURIFICATION OF A GRANULAR-STARCH-BINDING DOMAIN OF GLUCOAMYLASE-1 FROM ASPERGILLUS-NIGER [J].
BELSHAW, NJ ;
WILLIAMSON, G .
FEBS LETTERS, 1990, 269 (02) :350-353
[9]   Starch granules: structure and biosynthesis [J].
Buleon, A ;
Colonna, P ;
Planchot, V ;
Ball, S .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 1998, 23 (02) :85-112
[10]   Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry [J].
Christensen, T ;
Svensson, B ;
Sigurskjold, BW .
BIOCHEMISTRY, 1999, 38 (19) :6300-6310