A marching method for the triangulation of surfaces

被引:106
作者
Hartmann, E [1 ]
机构
[1] Tech Univ Darmstadt, Dept Math, D-64289 Darmstadt, Germany
关键词
triangulation; marching method; numerical implicitization; parametric surface; implicit surface; offset surface; blend surface;
D O I
10.1007/s003710050126
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
All surfaces that can be described by collections of equations, especially the parametric ones, can be treated uniformly as implicit surfaces. The idea of numerical implicitization makes this possible. We introduce a marching method for the triangulation of implicit surfaces. The method produces coherent nets of triangles, even for sets of intersecting surface patches.
引用
收藏
页码:95 / 108
页数:14
相关论文
共 12 条
[1]   Simplicial pivoting for mesh generation of implicity defined surfaces [J].
Allgower, E.L. ;
Gnutzmann, S. .
Computer Aided Geometric Design, 1991, 8 (04) :305-325
[2]   Spline approximations of real algebraic surfaces [J].
Bajaj, CL ;
Xu, GL .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 23 (2-3) :315-333
[3]   Polygonization of implicit surfaces [J].
Bloomenthal, Jules .
Computer Aided Geometric Design, 1988, 5 (04) :341-355
[4]  
GORG A, 1996, THESIS AACHEN
[5]   BLENDING AN IMPLICIT WITH A PARAMETRIC SURFACE [J].
HARTMANN, E .
COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (08) :825-835
[6]   Numerical implicitization for intersection and Gn-continuous blending of surfaces [J].
Hartmann, E .
COMPUTER AIDED GEOMETRIC DESIGN, 1998, 15 (04) :377-397
[7]   BLENDING OF IMPLICIT SURFACES WITH FUNCTIONAL SPLINES [J].
HARTMANN, E .
COMPUTER-AIDED DESIGN, 1990, 22 (08) :500-506
[8]  
Jinggong Li, 1990, Computer-Aided Geometric Design, V7, P209, DOI 10.1016/0167-8396(90)90032-M
[9]  
Lorensen W. E., 1987, COMPUT GRAPH, V21, P163, DOI DOI 10.1145/37402.37422
[10]   PARTITIONING EUCLIDEAN-SPACE [J].
SCHMERL, JH .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (01) :101-106