Bivariate empirical mode decomposition

被引:446
作者
Rilling, Gabriel [1 ]
Flandrin, Patrick
Goncalves, Paulo
Lilly, Jonathan M.
机构
[1] Ecole Normale Super Lyon, Dept Phys, CNRS, UMR 5672, F-69364 Lyon 07, France
[2] Ecole Normale Super Lyon, Lab Informat & Parallelisme, CNRS INRIA, UMR 5668, F-69364 Lyon 07, France
[3] Earth & Space Res, Seattle, WA 98102 USA
关键词
bivariate time series; complex-valued signals; empirical mode decomposition;
D O I
10.1109/LSP.2007.904710
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The empirical mode decomposition (EMD) has been introduced quite recently to adaptively decompose nonstationary and/or nonlinear time series [1]. The method being initially limited to real-valued time series, we propose here an extension to bivariate (or complex-valued) time series that generalizes the rationale underlying the EMD to the bivariate framework. Where the EMD extracts zero-mean oscillating components, the proposed bivariate extension is designed to extract zero-mean rotating components. The method is illustrated on a real-world signal, and properties of the output components are discussed. Free Matlab/C codes are available at http://perso.ens-lyon.fr/patrick.flandrin.
引用
收藏
页码:936 / 939
页数:4
相关论文
共 10 条
[1]  
ALTAF MU, 2007, IEEE INT C ACOUSTICS
[2]  
Huang NE, 2005, INTERD MATH SCI, V5, P1, DOI 10.1142/9789812703347
[3]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[4]   Wavelet ridge diagnosis of time-varying elliptical signals with application to an oceanic eddy [J].
Lilly, J. M. ;
Gascard, J. -C. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2006, 13 (05) :467-483
[5]   SUBMESOSCALE, COHERENT VORTICES IN THE OCEAN [J].
MCWILLIAMS, JC .
REVIEWS OF GEOPHYSICS, 1985, 23 (02) :165-182
[6]   THE VORTICES OF GEOSTROPHIC TURBULENCE [J].
MCWILLIAMS, JC .
JOURNAL OF FLUID MECHANICS, 1990, 219 :387-404
[7]  
RICHARDSON PL, 1989, J PHYS OCEANOGR, V19, P371, DOI 10.1175/1520-0485(1989)019<0371:TTMWSF>2.0.CO
[8]  
2
[9]  
RILLING G, 2006, IEEE INT C ACOUSTICS
[10]   Complex empirical mode decomposition [J].
Tanaka, Toshihisa ;
Mandic, Danilo P. .
IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (02) :101-104