Current trends in the structure-activity relationships of sialyltransferases

被引:128
作者
Audry, Magali [1 ]
Jeanneau, Charlotte [1 ]
Imberty, Anne [1 ]
Harduin-Lepers, Anne [2 ]
Delannoy, Philippe [2 ]
Breton, Christelle [1 ]
机构
[1] Grenoble Univ, CNRS, CERMAV, F-38041 Grenoble 9, France
[2] Univ Lille 1, CNRS, UMR 8576, F-59655 Villeneuve Dascq, France
关键词
3D structure; glycosyltransferase; Kdo; sialyltransferase; sialylmotifs; ALPHA/BETA-GALACTOSIDE ALPHA-2,3-SIALYLTRANSFERASE; PASTEURELLA-MULTOCIDA SIALYLTRANSFERASE; LUMINOUS MARINE BACTERIUM; CAMPYLOBACTER-JEJUNI; CRYSTAL-STRUCTURE; NEISSERIA-MENINGITIDIS; MULTIFUNCTIONAL SIALYLTRANSFERASE; CATALYTIC MECHANISM; GANGLIOSIDE MIMICS; ESCHERICHIA-COLI;
D O I
10.1093/glycob/cwq189
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sialyltransferases (STs) represent an important group of enzymes that transfer N-acetylneuraminic acid (Neu5Ac) from cytidine monophosphate-Neu5Ac to various acceptor substrates. In higher animals, sialylated oligosaccharide structures play crucial roles in many biological processes but also in diseases, notably in microbial infection and cancer. Cell surface sialic acids have also been found in a few microorganisms, mainly pathogenic bacteria, and their presence is often associated with virulence. STs are distributed into five different families in the CAZy database (http://www.cazy.org/). On the basis of crystallographic data available for three ST families and fold recognition analysis for the two other families, STs can be grouped into two structural superfamilies that represent variations of the canonical glycosyltransferase (GT-A and GT-B) folds. These two superfamilies differ in the nature of their active site residues, notably the catalytic base (a histidine or an aspartate residue). The observed structural and functional differences strongly suggest that these two structural superfamilies have evolved independently.
引用
收藏
页码:716 / 726
页数:11
相关论文
共 93 条
[1]   High-throughput screening methodology for the directed evolution of glycosyltransferases [J].
Aharoni, Amir ;
Thieme, Karena ;
Chiu, Cecilia P. C. ;
Buchini, Sabrina ;
Lairson, Luke L. ;
Chen, Hongming ;
Strynadka, Natalie C. J. ;
Wakarchuk, Warren W. ;
Withers, Stephen G. .
NATURE METHODS, 2006, 3 (08) :609-614
[2]   Molecular dissection of the ST8Sia IV polysialyltransferase - Distinct domains are required for neural cell adhesion molecule recognition and polysialylation [J].
Angata, K ;
Chan, D ;
Thibault, J ;
Fukuda, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (24) :25883-25890
[3]   Chemical diversity in the sialic acids and related α-keto acids:: An evolutionary perspective [J].
Angata, T ;
Varki, A .
CHEMICAL REVIEWS, 2002, 102 (02) :439-469
[4]   Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre [J].
Bennett-Lovsey, Riccardo M. ;
Herbert, Alex D. ;
Sternberg, Michael J. E. ;
Kelley, Lawrence A. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 70 (03) :611-625
[5]   Structures and mechanisms of glycosyltransferases [J].
Breton, C ;
Snajdrová, L ;
Jeanneau, C ;
Koca, J ;
Imberty, A .
GLYCOBIOLOGY, 2006, 16 (02) :29R-37R
[6]  
Breton C, 2002, BIOCHEM SOC SYMP, V69, P23
[7]   The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics [J].
Cantarel, Brandi L. ;
Coutinho, Pedro M. ;
Rancurel, Corinne ;
Bernard, Thomas ;
Lombard, Vincent ;
Henrissat, Bernard .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D233-D238
[8]   Consequences of the expression of sialylated antigens in breast cancer [J].
Cazet, Aurelie ;
Julien, Sylvain ;
Bobowski, Marie ;
Krzewinski-Recchi, Marie-Ange ;
Harduin-Lepers, Anne ;
Groux-Degroote, Sophie ;
Delannoy, Philippe .
CARBOHYDRATE RESEARCH, 2010, 345 (10) :1377-1383
[9]   NMR Spectroscopic Characterization of the Sialyltransferase CstII from Campylobacter jejuni: Histidine 188 Is the General Base [J].
Chan, Patrick H. W. ;
Lairson, Luke L. ;
Lee, Ho Jun ;
Wakarchuk, Warren W. ;
Strynadka, Natalie C. J. ;
Withers, Stephen G. ;
McIntosh, Lawrence P. .
BIOCHEMISTRY, 2009, 48 (47) :11220-11230
[10]   Minimal structural and glycosylation requirements for ST6Gal I activity and trafficking [J].
Chen, C ;
Colley, KJ .
GLYCOBIOLOGY, 2000, 10 (05) :531-538