Batch uptake of lysozyme: Effect of solution viscosity and mass transfer on adsorption

被引:42
作者
Wright, PR [1 ]
Muzzio, FJ [1 ]
Glasser, BJ [1 ]
机构
[1] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08855 USA
关键词
D O I
10.1021/bp980086o
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this study, solid-phase adsorption by macroporous acid hyper-diffusive resins was investigated in a batch uptake adsorption system to quantify solid-phase diffusion rates as a function of bulk phase viscosity. The performance of chromatographic resins used for adsorption of proteins is dependent on several factors including solid and liquid-phase diffusivity, boundary layer mass transfer, and intraparticle mass transfer effects. Understanding these effects is critical to process development and optimization of both packed and fluidized bed adsorption systems. The macroporous resin used here was Streamline SP, and the hyper-diffusive resin was S-HyperD LS. Both have been frequently used in fluidized bed adsorption of proteins; however, factors that affect uptake rates of these media are not well quantified. Adsorption isotherms were well represented by an empirical fit of a Langmuir isotherm. Solid-phase diffusion coefficients obtained from simulations were in agreement with other models for macroporous and hyper-diffusive particles. S-HyperD LS in the buffer system had the highest uptake rate, but increased bulk phase viscosity decreased the rate by approximately 50%. Increases in bulk phase viscosity increased film mass transfer effects, and uptake was observed to be a strong function of the film mass transfer coefficient. Uptake by Streamline SP particles was slower than S-HyperD in buffer, due to a greater degree of intraparticle mass transfer resistance. The effect of increased film mass transfer resistance coupled with intraparticle mass transfer resistances at an increased bulk phase viscosity resulted in a decrease of 80% in the uptake rate by Streamline SP relative to S-HyperD.
引用
收藏
页码:913 / 921
页数:9
相关论文
共 28 条
[1]   FLOW-THROUGH PARTICLES FOR THE HIGH-PERFORMANCE LIQUID-CHROMATOGRAPHIC SEPARATION OF BIOMOLECULES - PERFUSION CHROMATOGRAPHY [J].
AFEYAN, NB ;
GORDON, NF ;
MAZSAROFF, I ;
VARADY, L ;
FULTON, SP ;
YANG, YB ;
REGNIER, FE .
JOURNAL OF CHROMATOGRAPHY, 1990, 519 (01) :1-29
[2]   DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR STIFF ODES [J].
ALEXANDER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (06) :1006-1021
[3]   ANALYSIS OF AFFINITY SEPARATIONS .1. PREDICTING THE PERFORMANCE OF AFFINITY ADSORBERS [J].
ARNOLD, FH ;
BLANCH, HW ;
WILKE, CR .
CHEMICAL ENGINEERING JOURNAL AND THE BIOCHEMICAL ENGINEERING JOURNAL, 1985, 30 (02) :B9-B23
[4]  
Batt Brian C., 1995, Bioseparation, V5, P41
[5]   ADVANCED SORBENTS FOR PREPARATIVE PROTEIN SEPARATION PURPOSES [J].
BOSCHETTI, E .
JOURNAL OF CHROMATOGRAPHY A, 1994, 658 (02) :207-236
[6]  
Carnahan B., 1969, APPL NUMERICAL METHO
[7]  
Chang YK, 1996, BIOTECHNOL BIOENG, V49, P512, DOI 10.1002/(SICI)1097-0290(19960305)49:5<512::AID-BIT4>3.3.CO
[8]  
2-X
[9]  
Davis M.E., 1984, NUMERICAL METHODS MO
[10]   APPLICABILITY OF THE EXTERNAL-DIFFUSION MODEL IN ADSORPTION STUDIES [J].
DO, DD ;
RICE, RG .
CHEMICAL ENGINEERING SCIENCE, 1990, 45 (05) :1419-1421