Identification of the minimal protein domain required for priming activity of Munc13-1

被引:101
作者
Stevens, DR
Wu, ZX
Matti, U
Junge, HJ
Schirra, C
Becherer, U
Wojcik, SM
Brose, N [1 ]
Rettig, J
机构
[1] Max Planck Inst Expt Med, Abt Mol Neurobiol, D-37075 Gottingen, Germany
[2] Univ Saarland, Inst Physiol, D-66421 Homburg, Germany
关键词
D O I
10.1016/j.cub.2005.10.055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Most nerve cells communicate with each other through synaptic transmission at chemical synapses. The regulated exocytosis of neurotransmitters, hormones, and peptides occurs at specialized membrane areas through Ca2+-triggered fusion of secretory vesicles with the plasma membrane [1-7]. Prior to fusion, vesicles are docked at the plasma membrane and must then be rendered fusion-competent through a process called priming. The molecular mechanism underlying this priming process is most likely the formation of the SNARE complex consisting of Syntaxin 1, SNAP-25, and Synaptobrevin 2. Members of the Munc13 protein family consisting of Munc13-1, -2, -3, and -4 were found to be absolutely required for this priming process [8-13]. In the present study, we identified the minimal Munc13-1 domain that is responsible for its priming activity. Using Munc13-1 deletion constructs in an electrophysiological gain-of-function assay of chromaffin-granule secretion, we show that priming activity is mediated by the C-terminal residues 1100-1735 of Munc13-1, which contains both Munc13-homology domains and the C-terminal C-2 domain. Priming by Munc13-1 appears to require its interaction with Syntaxin 1 because point mutants that do not bind Syntaxin 1 do not prime chrornaffin granules.
引用
收藏
页码:2243 / 2248
页数:6
相关论文
共 29 条
[1]   Drosophila Unc-13 is essential for synaptic transmission [J].
Aravamudan, B ;
Fergestad, T ;
Davis, WS ;
Rodesch, CK ;
Broadie, K .
NATURE NEUROSCIENCE, 1999, 2 (11) :965-971
[2]   Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells [J].
Ashery, U ;
Varoqueaux, F ;
Voets, T ;
Betz, A ;
Thakur, P ;
Koch, H ;
Neher, E ;
Brose, N ;
Rettig, J .
EMBO JOURNAL, 2000, 19 (14) :3586-3596
[3]   A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1 [J].
Ashery, U ;
Koch, H ;
Scheuss, V ;
Brose, N ;
Rettig, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (03) :1094-1099
[4]   Munc13-1 is essential for fusion competence of glutamatergic synoptic vesicles [J].
Augustin, I ;
Rosenmund, C ;
Südhof, TC ;
Brose, N .
NATURE, 1999, 400 (6743) :457-461
[5]   Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming [J].
Betz, A ;
Thakur, P ;
Junge, HJ ;
Ashery, U ;
Rhee, JS ;
Scheuss, V ;
Rosenmund, C ;
Rettig, J ;
Brose, N .
NEURON, 2001, 30 (01) :183-196
[6]  
Betz A, 1997, J BIOL CHEM, V272, P2520
[7]   Mammalian Unc-13 homologues as possible regulators of neurotransmitter release [J].
Betz, A ;
Telemenakis, I ;
Hofmann, K ;
Brose, N .
BIOCHEMICAL SOCIETY TRANSACTIONS, 1996, 24 (03) :661-666
[8]  
BRENNER S, 1974, GENETICS, V77, P71
[9]   MAMMALIAN HOMOLOGS OF CAENORHABDITIS-ELEGANS UNC-13 GENE DEFINE NOVEL FAMILY OF C-2-DOMAIN PROTEINS [J].
BROSE, N ;
HOFMANN, K ;
HATA, Y ;
SUDHOF, TC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :25273-25280
[10]   Regulation of transmitter release by Unc-13 and its homologues [J].
Brose, N ;
Rosenmund, C ;
Rettig, J .
CURRENT OPINION IN NEUROBIOLOGY, 2000, 10 (03) :303-311