The putative sensor histidine kinase CKI1 is involved in female gametophyte development in Arabidopsis

被引:88
作者
Hejátko, J
Pernisová, M
Eneva, T
Palme, K
Brzobohaty, B
机构
[1] Acad Sci Czech Republ, Inst Biophys, CS-61265 Brno, Czech Republic
[2] Masaryk Univ, Dept Funct Genom & Proteom, CS-61137 Brno, Czech Republic
[3] Max Planck Gesell, Max Delbruck Lab, D-50829 Cologne, Germany
[4] Univ Freiburg, Inst Biol 2, D-79104 Freiburg, Germany
关键词
female gametophyte development; two-component signaling; sensor histidine kinase; early seed development; genomic imprinting;
D O I
10.1007/s00438-003-0858-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Embryo sac formation is a fundamental step in sexual reproduction in plants. However, the key players involved in the development of the female gametophyte remain elusive. We present data indicating that a two-component sensor histidine kinase, CKI1, originally implicated in cytokinin perception, is required for completion of megagametogenesis in Arabidopsis. We isolated a loss-of-function mutation in CKI1 resulting from an insertion of the En-1 transposon into the CKI1 coding sequence. Genetic analysis revealed that the mutant allele, ckil-i, could not be transmitted through the female germ line. Confocal laser scanning microscopy identified a block in megagametogenesis, characterized by the abortion of the central vacuole in mutant embryo sacs, and degradation of the developing female gametophyte after completion of all mitotic divisions. The recovery of two independent stable alleles and one revertant wild-type allele resulting from En-1 excision confirmed unambiguously the causal link between the ckil-i mutation and the abnormal phenotype. In situ localization of CKI1 mRNA and histochemical analysis of stable transformants harboring the uidA gene under the control of CKI1 promoter revealed that expression of CKI1 starts at the very beginning of female gametophyte development, and continues until fertilization. This suggests that the developing embryo sac may remain sensitive to signals recognized by CKI1 throughout megagametogenesis. Furthermore, expression of the paternally transmitted CKI1 was detected early after fertilization. The results indicate a role for a two-component signaling system during female gametophyte development, and provide the first evidence that gametophytic expression of a sensor-like molecule is essential for specific processes during megagametogenesis.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 40 条
[1]   Successful PCR-based reverse genetic screens using an En-1-mutagenised Arabidopsis thaliana population generated via single-seed descent [J].
Baumann, E ;
Lewald, J ;
Saedler, H ;
Schulz, B ;
Wisman, E .
THEORETICAL AND APPLIED GENETICS, 1998, 97 (5-6) :729-734
[2]  
Blintsov AN, 2000, BIOCHEMISTRY-MOSCOW+, V65, P192
[3]   Development of endosperm in Arabidopsis thaliana [J].
Brown, RC ;
Lemmon, BE ;
Nguyen, H ;
Olsen, OA .
SEXUAL PLANT REPRODUCTION, 1999, 12 (01) :32-42
[4]   Maternal control of seed development [J].
Chaudhury, AM ;
Berger, F .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2001, 12 (05) :381-386
[5]   Control of early seed development [J].
Chaudhury, AM ;
Koltunow, A ;
Payne, T ;
Luo, M ;
Tucker, MR ;
Dennis, ES ;
Peacock, WJ .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2001, 17 :677-699
[6]   Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis [J].
Christensen, CA ;
Subramanian, S ;
Drews, GN .
DEVELOPMENTAL BIOLOGY, 1998, 202 (01) :136-151
[7]   Megagametogenesis in Arabidopsis wild type and the Gf mutant [J].
Christensen, CA ;
King, EJ ;
Jordan, JR ;
Drews, GN .
SEXUAL PLANT REPRODUCTION, 1997, 10 (01) :49-64
[8]   Mitochondrial GFA2 is required for synergid cell death in Arabidopsis [J].
Christensen, CA ;
Gorsich, SW ;
Brown, RH ;
Jones, LG ;
Brown, J ;
Shaw, JM ;
Drews, GN .
PLANT CELL, 2002, 14 (09) :2215-2232
[9]  
De Martinis D, 1999, PLANT CELL, V11, P1061, DOI 10.2307/3870798
[10]   Development and function of the angiosperm female gametophyte [J].
Drews, GN ;
Yadegari, R .
ANNUAL REVIEW OF GENETICS, 2002, 36 :99-124