The role of hexokinase in plant sugar signal transduction and growth and development

被引:336
作者
Xiao, WY
Sheen, J
Jang, JC [1 ]
机构
[1] Ohio State Univ, Dept Hort & Crop Sci, Columbus, OH 43210 USA
[2] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA
基金
美国国家科学基金会;
关键词
development; hexokinase; senescence; sugar signaling;
D O I
10.1023/A:1026501430422
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous studies have revealed a central role of Arabidopsis thaliana hexokinases (AtHXK1 and AtHXK2) in the glucose repression of photosynthetic genes and early seedling development. However, it remains unclear whether HXK can modulate the expression of diverse sugar-regulated genes. On the basis of the results of analyses of gene expression in HXK transgenic plants, we suggest that three distinct glucose signal transduction pathways exist in plants. The first is an AtHXK1-dependent pathway in which gene expression is correlated with the AtHXK1-mediated signaling function. The second is a glycolysis-dependent pathway that is influenced by the catalytic activity of both AtHXK1 and the heterologous yeast Hxk2. The last is an AtHXK1-independent pathway in which gene expression is independent of AtHXK1. Further investigation of HXK transgenic Arabidopsis discloses a role of HXK in glucose-dependent growth and senescence. In the absence of exogenous glucose, plant growth is limited to the seedling stage with restricted true leaf development even after a 3-week culture on MS medium. In the presence of glucose, however, over-expressing Arabidopsis or yeast HXK in plants results in the repression of growth and true leaf development, and early senescence, while under-expressing AtHXK1 delays the senescence process. These studies reveal multiple glucose signal transduction pathways that control diverse genes and processes that are intimately linked to developmental stages and environmental conditions.
引用
收藏
页码:451 / 461
页数:11
相关论文
共 54 条
[1]   SUCROSE MIMICS THE LIGHT INDUCTION OF ARABIDOPSIS NITRATE REDUCTASE GENE-TRANSCRIPTION [J].
CHENG, CL ;
ACEDO, GN ;
CRISTINSIN, M ;
CONKLING, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (05) :1861-1864
[2]   A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis [J].
Cutler, S ;
Ghassemian, M ;
Bonetta, D ;
Cooney, S ;
McCourt, P .
SCIENCE, 1996, 273 (5279) :1239-1241
[3]  
Dai N, 1999, PLANT CELL, V11, P1253, DOI 10.1105/tpc.11.7.1253
[4]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[5]   SLOW-GROWTH PHENOTYPE OF TRANSGENIC TOMATO EXPRESSING APOPLASTIC INVERTASE [J].
DICKINSON, CD ;
ALTABELLA, T ;
CHRISPEELS, MJ .
PLANT PHYSIOLOGY, 1991, 95 (02) :420-425
[6]   CORRELATION BETWEEN ARRESTED SECONDARY PLASMODESMAL DEVELOPMENT AND ONSET OF ACCELERATED LEAF SENESCENCE IN YEAST ACID INVERTASE TRANSGENIC TOBACCO PLANTS [J].
DING, B ;
HAUDENSHIELD, JS ;
WILLMITZER, L ;
LUCAS, WJ .
PLANT JOURNAL, 1993, 4 (01) :179-189
[7]  
Dyer JH, 1995, PLANT PHYSIOL, V109, P1497
[8]   Co-ordinated induction of mRNAs for extracellular invertase and a glucose transporter in Chenopodium rubrum by cytokinins [J].
Ehness, R ;
Roitsch, T .
PLANT JOURNAL, 1997, 11 (03) :539-548
[9]  
Ehness R, 1997, PLANT CELL, V9, P1825
[10]   GENETIC AND BIOCHEMICAL-EVIDENCE FOR HEXOKINASE PII AS A KEY ENZYME INVOLVED IN CARBON CATABOLITE REPRESSION IN YEAST [J].
ENTIAN, KD .
MOLECULAR & GENERAL GENETICS, 1980, 178 (03) :633-637