Twist as a symmetry principle and the noncommutative gauge theory formulation

被引:23
作者
Chaichian, M.
Tureanu, A.
Zet, G.
机构
[1] Univ Helsinki, Helsinki Inst Phys, Dept Phys Sci, High Energy Phys Div, FIN-00014 Helsinki, Finland
[2] Gh Asachi Tech Univ, Dept Phys, Iasi 700050, Romania
关键词
D O I
10.1016/j.physletb.2007.06.026
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Based on the analysis of the most natural and general ansatz, we conclude that the concept of twist symmetry, originally obtained for the noncommutative space-time, cannot be extended to include internal gauge symmetry. The case is reminiscent of the Coleman-Mandula theorem. Invoking the supersymmetry may reverse the situation. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:319 / 323
页数:5
相关论文
共 23 条
[1]   Comments on noncommutative gravity [J].
Alvarez-Gaume, Luis ;
Meyer, Frank ;
Vazquez-Mozo, Miguel A. .
NUCLEAR PHYSICS B, 2006, 753 (1-2) :92-117
[2]  
[Anonymous], 2005, QUANTUM THEORY FIELD
[3]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[4]   Noncommutative geometry and gravity [J].
Aschieri, Paolo ;
Dimitrijevic, Marija ;
Meyer, Frank ;
Wess, Julius .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (06) :1883-1911
[5]   Twisted gauge theories [J].
Aschieri, Paolo ;
Dimitrijevic, Marija ;
Meyer, Frank ;
Schraml, Stefan ;
Wess, Julius .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 78 (01) :61-71
[6]   Twist symmetry and gauge invariance [J].
Chaichian, M. ;
Tureanu, A. .
PHYSICS LETTERS B, 2006, 637 (03) :199-202
[7]   Noncommutative gauge field theories: a no-go theorem [J].
Chaichian, M ;
Presnajder, P ;
Sheikh-Jabbari, MM ;
Tureanu, A .
PHYSICS LETTERS B, 2002, 526 (1-2) :132-136
[8]   On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT [J].
Chaichian, M ;
Kulish, PP ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2004, 604 (1-2) :98-102
[9]  
CHAICHIAN M, 1996, INTRO QUANTUM GROUPS
[10]  
CHAICHIAN M, 2005, PHYS REV LETT, V94